The present study describes in primates the effects of a spinal cord injury on the number and size of the neurons in the magnocellular part of the red nucleus (RNm), the origin of the rubrospinal tract, and evaluates whether a neutralization of Nogo-A reduces the lesionedinduced degenerative processes observed in RNm. Two groups of monkeys were subjected to unilateral section of the spinal cord affecting the rubrospinal tract; one group was subsequently treated with an antibody neutralizing Nogo-A; the second group received a control antibody. Intact animals were also included in the study. Counting neurons stained with a monoclonal antibody recognizing non-phosphorylated epitopes on neurofilaments (SMI-32) indicated that their number in the contralesional RNm was consistently inferior to that in the ipsilesional RNm, in a proportion amounting up to 35%. The lesion also induced shrinkage of the soma of the neurons detected in the contralesional RNm. Infusing an antiNogo-A antibody at the site of the lesion did not increase the proportion of SMI-32 positive rubrospinal neurons in the contralesional RNm nor prevent shrinkage.
The neuronal serine protease inhibitor neuroserpin is widely expressed in the developing and adult brain. In the neocortex, neuroserpin is displayed particularly during the period of synaptic specification and refinement, indicating a role as modulator of extracellular proteolytic processes. The synaptic connections of the visual system of the mouse are shaped during early postnatal life by an activity-dependent process. We have studied the expression of the neuronal serine protease inhibitor neuroserpin in the primary visual cortex of mice from birth until the end of the critical period by means of reverse transcription polymerase chain reaction and in situ hybridization. The localization and the level of expression were constant throughout this period. Monocular deprivation with an eyelid sutured induced a decrease in neuroserpin expression in neurons of area 17 after 1 week of deprivation, the decrease being more pronounced on the side contralateral to the closed eye. The expression of neuroserpin in the visual cortex during the critical period and its decrease in parallel to the refinement of synaptic contacts after visual deprivation suggests a regulative role of neuroserpin on these processes.
Background: Polymicrogyria is a malformation of the cerebral cortex often resulting in epilepsy or mental retardation. It remains unclear whether this pathology affects the structure and function of the corticospinal (CS) system. The anatomy and histology of the brain of one macaque monkey exhibiting a spontaneous polymicrogyria (PMG monkey) were examined and compared to the brain of normal monkeys. The CS tract was labelled by injecting a neuronal tracer (BDA) unilaterally in a region where low intensity electrical microstimulation elicited contralateral hand movements (presumably the primary motor cortex in the PMG monkey).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.