One line of research on the possible ways of inhibiting the growth of glioblastoma multiforme (GBM), a brain tumor with a very poor prognosis, is the analysis of its metabolism, such as fatty acid synthesis by desaturases and elongases. This study examines the expression of elongases ELOVL1, ELOVL2, ELOVL3, ELOVL4, ELOVL5, ELOVL6, and ELOVL7 in GBM tumor samples from 28 patients (16 men and 12 women), using a quantitative real-time polymerase chain reaction (qRT-PCR). To demonstrate the influence of the tumor microenvironment on the tested elongases, U-87 MG cells were cultured in nutrient-deficient conditions and with cobalt chloride (CoCl2) as a hypoxia-mimetic agent. The results showed that the expression of ELOVL1 and ELOVL7 in the GBM tumor was lower than in the peritumoral area. The expression of six of the seven studied elongases differed between the sexes. Hypoxia increased the expression of ELOVL5 and ELOVL6 and decreased the expression of ELOVL1, ELOVL3, ELOVL4, and ELOVL7 in U-87 MG cells. These results indicate that the synthesis of fatty acids, especially polyunsaturated fatty acids (PUFA), in GBM tumors may be higher in men than in women. In contrast, the synthesis of saturated fatty acids (SFA) may be higher in women than in men.
Glioblastoma multiforme (GBM) is a malignant glioma, difficult to detect and with the lowest survival rates among gliomas. Its greater incidence among men and its higher survival rate among premenopausal women suggest that it may be associated with the levels of androgens. As androgens stimulate the androgen receptor (AR), which acts as a transcription factor, the aim of this study was the investigate the role of AR in the progression of GBM. The study was conducted on tissues collected from three regions of GBM tumors (tumor core, enhancing tumor region, and peritumoral area). In addition, an in vitro experiment was conducted on U-87 cells under various culture conditions (necrotic, hypoxic, and nutrient-deficient), mimicking the conditions in a tumor. In both of the models, androgen receptor expression was determined at the gene and protein levels, and the results were confirmed by confocal microscopy and immunohistochemistry. AR mRNA expression was higher under nutrient-deficient conditions and lower under hypoxic conditions in vitro. However, there were no differences in AR protein expression. No differences in AR mRNA expression were observed between the tested tumor structures taken from patients. No differences in AR mRNA expression were observed between the men and women. However, AR protein expression in tumors resected from patients was higher in the enhancing tumor region and in the peritumoral area than in the tumor core. In women, higher AR expression was observed in the peritumoral area than in the tumor core. AR expression in GBM tumors did not differ significantly between men and women, which suggests that the higher incidence of GBM in men is not associated with AR expression. In the group consisting of men and women, AR expression varied between the regions of the tumor: AR expression was higher in the enhancing tumor region and in the peritumoral area than in the tumor core, showing a dependence on tumor conditions (hypoxia and insufficient nutrient supply).
Ageing is a composite process that involves numerous changes at the cellular, tissue, organ and whole-body levels. These changes result in decreased functioning of the organism and the development of certain conditions, which ultimately lead to an increased risk of death. Advanced glycation end products (AGEs) are a family of compounds with a diverse chemical nature. They are the products of non-enzymatic reactions between reducing sugars and proteins, lipids or nucleic acids and are synthesised in high amounts in both physiological and pathological conditions. Accumulation of these molecules increases the level of damage to tissue/organs structures (immune elements, connective tissue, brain, pancreatic beta cells, nephrons, and muscles), which consequently triggers the development of age-related diseases, such as diabetes mellitus, neurodegeneration, and cardiovascular and kidney disorders. Irrespective of the role of AGEs in the initiation or progression of chronic disorders, a reduction in their levels would certainly provide health benefits. In this review, we provide an overview of the role of AGEs in these areas. Moreover, we provide examples of lifestyle interventions, such as caloric restriction or physical activities, that may modulate AGE formation and accumulation and help to promote healthy ageing.
It is a well-known fact that physical activity benefits people of all age groups. However, highly intensive training, maladaptation, improper equipment, and lack of sufficient rest lead to contusions and sports-related injuries. From the perspectives of sports professionals and those performing regular–amateur sports activities, it is important to maintain proper levels of training, without encountering frequent injuries. The bodily responses to physical stress and intensive physical activity are detected on many levels. Epigenetic modifications, including DNA methylation, histone protein methylation, acetylation, and miRNA expression occur in response to environmental changes and play fundamental roles in the regulation of cellular activities. In the current review, we summarise the available knowledge on epigenetic alterations present in tissues and organs (e.g., muscles, the brain, tendons, and bones) as a consequence of sports-related injuries. Epigenetic mechanism observations have the potential to become useful tools in sports medicine, as predictors of approaching pathophysiological alterations and injury biomarkers that have already taken place.
Neuroinflammation is one of the postulated mechanisms for Pb neurotoxicity. However, the exact molecular mechanisms responsible for its pro-inflammatory effect are not fully elucidated. In this study, we examined the role of glial cells in neuroinflammation induced by Pb exposure. We investigated how microglia, a type of glial cell, responded to the changes caused by perinatal exposure to Pb by measuring the expression of Iba1 at the mRNA and protein levels. To assess the state of microglia, we analyzed the mRNA levels of specific markers associated with the cytotoxic M1 phenotype (Il1b, Il6, and Tnfa) and the cytoprotective M2 phenotype (Arg1, Chi3l1, Mrc1, Fcgr1a, Sphk1, and Tgfb1). Additionally, we measured the concentration of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). To assess the reactivity and functionality status of astrocytes, we analyzed the GFAP (mRNA expression and protein concentration) as well as glutamine synthase (GS) protein level and activity. Using an electron microscope, we assessed ultrastructural abnormalities in the examined brain structures (forebrain cortex, cerebellum, and hippocampus). In addition, we measured the mRNA levels of Cxcl1 and Cxcl2, and their receptor, Cxcr2. Our data showed that perinatal exposure to Pb at low doses affected both microglia and astrocyte cells’ status (their mobilization, activation, function, and changes in gene expression profile) in a brain-structure-specific manner. The results suggest that both microglia and astrocytes represent a potential target for Pb neurotoxicity, thus being key mediators of neuroinflammation and further neuropathology evoked by Pb poisoning during perinatal brain development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.