We report size- and distance-dependent surface-energy transfer (SET) properties of gold nanoparticles for recognizing hepatitis C virus (HCV) RNA sequence sensitively and selectively (single-base mutations) in a homogeneous format. We have demonstrated that quenching efficiency increases by three orders of magnitude, as the particle size increases from 5 to 70 nm. Due to this extraordinarily high K(SV), nanoparticle SET (NSET) detection limit can be as low as 300 fM concentration of RNA, depending on the size of gold nanoparticle. We have shown that the distance-dependent quenching efficiency is highly dependent on the particle size and the distance at which the energy-transfer efficiency is 50 %, ranges all the way from 8 nm, which is very close to the accessible distance of conventional Förster resonance energy transfer (FRET), to about 40 nm by choosing gold nanoparticles of different diameters. Our result points out that dipole-to-metal-particle energy transfer and NSET models provide a better description of the distance dependence of the quenching efficiencies for 8 nm gold nanoparticle, but agreement is poor for 40 and 70 nm gold nanoparticles, for which the measured values were always larger than the predicted ones.
Using this survey instrument, we found adverse sequelae of radical prostatectomy to be surprisingly high. However, patients were generally satisfied with their decision to undergo surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.