Airborne transmission is predicted to be a prevalent route of human exposure with SARS-CoV-2. Aside from African green monkeys, nonhuman primate models that replicate airborne transmission of SARS-CoV-2 have not been investigated. A comparative evaluation of COVID-19 in African green monkeys, rhesus macaques, and cynomolgus macaques following airborne exposure to SARS-CoV-2 was performed to determine critical disease parameters associated with disease progression, and establish correlations between primate and human COVID-19. Respiratory abnormalities and viral shedding were noted for all animals, indicating successful infection. Cynomolgus macaques developed fever, and thrombocytopenia was measured for African green monkeys and rhesus macaques. Type II pneumocyte hyperplasia and alveolar fibrosis were more frequently observed in lung tissue from cynomolgus macaques and African green monkeys. The data indicate that, in addition to African green monkeys, macaques can be successfully infected by airborne SARS-CoV-2, providing viable macaque natural transmission models for medical countermeasure evaluation.
Cytoplasmic dynein accumulates on the cortex of Caenorhabditis elegans female meiotic spindles just before they rotate in a dynein-dependent manner. These spindles also shorten to a spherical shape that might reduce the drag that opposes cortical pulling by dynein.
Purpose of Review
This review is aimed at highlighting recent research and articles on the complicated relationship between virus, vector, and host and how biosurveillance at each level informs disease spread and risk.
Recent Findings
While human cases of CCHFV and tick identification in non-endemic areas in 2019–2020 were reported to sites such as ProMed, there is a gap in recent published literature on these and broader CCHFV surveillance efforts from the late 2010s.
Summary
A review of the complex aspects of CCHFV maintenance in the environment coupled with high fatality rate and lack of vaccines and therapeutics warrants the need for a One-Health approach toward detection and increased biosurveillance programs for CCHFV.
The emergence of SARS-CoV-2 pandemic has highlighted the need for animal models that faithfully recapitulate the salient features of COVID-19 disease in humans; these models are necessary for the rapid down-selection, testing, and evaluation of medical countermeasures. Here we performed a direct comparison of two distinct routes of SARS-CoV-2 exposure, combined intratracheal/intranasal and small particle aerosol, in two nonhuman primate species: rhesus and cynomolgus macaques. While all four experimental groups displayed very few outward clinical signs, evidence of mild to moderate respiratory disease was present on radiographs and at the time of necropsy. Cynomolgus macaques exposed via the aerosol route also developed the most consistent fever responses and had the most severe respiratory disease and pathology. This study demonstrates that while all four models were suitable representations of mild COVID-like illness, aerosol exposure of cynomolgus macaques to SARS-CoV-2 produced the most severe disease, which may provide additional clinical endpoints for evaluating therapeutics and vaccines.
Crimean-Congo hemorrhagic fever virus (CCHFV) is endemic in Asia, infecting many animal hosts, but CCHFV has not been reported in Myanmar. We conducted a seroepidemiologic survey of logging communities in Myanmar and found CCHFV exposure was common (9.8%) and exposure to wild animal blood and body fl uids was associated with seropositivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.