The properties of an oxyfluoride glass ceramic that possesses high transparency after ceramming are described. Approximately 25 vol % of this material is comprised of cubic, fluoride nanocrystals and the remainder is a predominantly oxide glass. When doped with Pr+3, the fluorescence lifetime at 1300 nm is longer than in a fluorozirconate glass, suggesting that a significant fraction of the rare-earth dopant is preferentially partitioned into the fluoride crystal phase. This material has the added advantage of being compatible with ambient air processing.
We report an efficient glass-ceramic fiber laser and show that its slope efficiency (~30%) is not compromised by the presence of Nd-doped fluoride crystals embedded within the core of the single-mode optical fiber. In contrast, the spectroscopy (fluorescence and gain spectrum) of the Nd(3+) ions is dramatically changed by the ceramming process, an indication of strong partitioning of the rare-earth ions into the CdF(2):PbF(2):YF(3) crystal environment. The enormous potential for a new range of optical devices based on transparent glass-ceramic materials is highlighted.
The results of a cutback measurement of a glass-ceramic optical waveguide with single-mode fiber geometry have demonstrated that sub decibels per kilometer losses can be achieved. Difference spectra show that the limit of intrinsic scattering in these two-phase structures ought to be tens of decibels per kilometer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.