Article impact statement: Research concerning controversial species highlights a need to adopt formal reflexivity methods in conservation biology.
New Zealand’s freshwater ecosystems support a diverse and unique array of endemic flora and fauna. However, the conservation of its freshwater biodiversity is often overlooked in comparison to terrestrial and marine environments, and is under increasing threat from agricultural intensification, urbanisation, climate change, invasive species, and water abstraction. New Zealand has some of the highest levels of threatened freshwater species in the world with, for example, up to 74% of native freshwater fish listed as endangered or at risk. Threatened species are often discounted in water policy and management that is predominantly focussed on balancing water quality and economic development rather than biodiversity. We identify six clear actions to redress the balance of protecting New Zealand’s freshwater biodiversity: 1. change legislation to adequately protect native and endemic fish species and invertebrates, including those harvested commercially and recreationally; 2. protect habitat critical to the survival of New Zealand’s rare and range-restricted fish, invertebrate and plant freshwater species; 3. include river habitat to protect ecosystem health in the National Objectives Framework for the National Policy Statement for freshwater; 4. establish monitoring and recovery plans for New Zealand’s threatened freshwater invertebrate fauna; 5. develop policy and best management practices for freshwater catchments in addition to lakes and rivers to also include wetlands, estuaries, and groundwater ecosystems; and 6. establish, improve, and maintain appropriately wide riparian zones that connect across entire water catchments. We have published these recommendations as a scientific statement prepared for the Oceania Section of the Society for Conservation Biology to facilitate communication of our thoughts to as wide an audience as possible (https://conbio.org/images/content_groups/Oceania/Scientific_Statement_1_.pdf, accessed 8 February 2016).
For many ecosystems, feral horses are increasingly becoming an important if not dominant component of ungulate biomass and hence influence on community dynamics. Yet we still know little of how horses contribute to key ecological interactions including predator-prey and indirect competitive relationships at a community level. Notably, feral species like horses can exhibit life-history traits that differ from that of native (mainly artiodactyl) herbivore competitors. Artificial selection for traits like increased, early, or extended reproduction that have yet to be reversed by natural selection, coupled with naturally selected differences in anatomy and behavior, in addition to unique management objectives for horses compared to other species, means that the dynamics of feral horse populations are not likely to align with what might be expected of other large herbivores. Unexpected population dynamics and inherent biological asymmetries between native ungulates and feral horses may therefore influence the former via direct competition for shared resources and through enemy-mediated interactions like apparent competition. In several localities feral horses now co-exist with multiple native prey species, some of which are in decline or are species at risk. Compounding risks to native species from direct or indirect competitive exclusion by horses is the unique nature and socio-political context of feral horse management, which tends towards allowing horse populations to be limited largely by natural, density-dependent factors. We summarize the inherent asymmetries between feral horse biology and that of other ungulate prey species with consequences for conservation, focusing on predator-prey and emerging indirect interactions in multi-prey systems, and highlight future directions to address key knowledge gaps in our understanding of how feral horses may now be contributing to the (re)structuring of food webs. Observations of patterns of rapid growth and decline, and associated skews in sex ratios of feral horse populations, indicate a heightened potential for indirect interactions among large ungulate prey species, where there is a prevalence of feral horses as preferred prey, particularly where native prey are declining. In places like western North America, we expect predator-prey interactions involving feral horses to become an increasingly important factor in the conservation of wildlife. This applies not only to economically or culturally important game species but also at-risk species, both predators (e.g., wolves [Canis lupus], grizzly bears [Ursus arctos]) and prey (e.g., woodland caribou [Rangifer tarandus caribou]), necessitating an ecological understanding of the role of horses in natural environments that goes beyond that of population control.
The Canterbury Region of New Zealand has undergone rapid and significant land use intensification over the last three decades resulting in a substantial increase of nitrate-nitrogen leached to the environment. In this article, we determined the nitrate grey water footprint of milk, which is the amount of water needed to dilute nitrogen leached past the root zone to meet different receiving water nitrate standards per milk production unit. Our analysis revealed the nitrate grey water footprint for Canterbury ranged from 433 to 11,110 litres of water per litre of milk, depending on the water standards applied. This footprint is higher than many estimates for global milk production, and reveals that footprints are very dependent on inputs included in the analyses and on the water quality standards applied to the receiving water. The extensive dairy farming in Canterbury is leading to significant pollution of the region's groundwater, much of which is used for drinking water. Dairy farming at this intensity is unsustainable and if not reduced could pose a significant risk to human health and the market perception of the sustainability of the New Zealand dairy industry and its products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.