Abstract. We present the Tom language that extends Java with the purpose of providing high level constructs inspired by the rewriting community. Tom furnishes a bridge between a general purpose language and higher level specifications that use rewriting. This approach was motivated by the promotion of rewriting techniques and their integration in large scale applications. Powerful matching capabilities along with a rich strategy language are among Tom's strong points, making it easy to use and competitive with other rule based languages.
In predicate logic, the proof that a theorem P holds in a theory Th is typically conducted in natural deduction or in the sequent calculus using all the information contained in the theory in a uniform way. Introduced ten years ago, Deduction modulo allows us to make use of the computational part of the theory Th for true computations modulo which deductions are performed.Focusing on the sequent calculus, this paper presents and studies the dual concept where the theory is used to enrich the deduction system with new deduction rules in a systematic, correct and complete way. We call such a new deduction system "superdeduction".We introduce a proof-term language and a cutelimination procedure both based on Christian Urban's work on classical sequent calculus. Strong normalisation is proven under appropriate and natural hypothesis, therefore ensuring the consistency of the embedded theory and of the deduction system.The proofs obtained in such a new system are much closer to the human intuition and practice. We consequently sketch how superdeduction along with deduction modulo can be used to ground the formal foundations of new extendible proof assistants like lemuridae, our prototypal implementation of superdeduction modulo.
Abstract. Developing Cyber-Physical Systems requires methods and tools to support simulation and verification of hybrid (both continuous and discrete) models. The Acumen modeling and simulation language is an open source testbed for exploring the design space of what rigorousbut-practical next-generation tools can deliver to developers of CyberPhysical Systems. Like verification tools, a design goal for Acumen is to provide rigorous results. Like simulation tools, it aims to be intuitive, practical, and scalable. However, it is far from evident whether these two goals can be achieved simultaneously. This paper explains the primary design goals for Acumen, the core challenges that must be addressed in order to achieve these goals, the "agile research method" taken by the project, the steps taken to realize these goals, the key lessons learned, and the emerging language design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.