The lobula giant movement detector (LGMD) and descending contralateral movement detector (DCMD) constitute one motion-sensitive pathway in the locust visual system that is implicated in collision-avoidance behaviors. While this pathway is thought to respond preferentially to objects approaching on a direct collision course, emerging studies suggest the firing rate is able to monitor more complicated movements that would occur under natural conditions. While previous studies have compared the response of the DCMD to objects on collision courses that travel at different speeds, velocity has not been manipulated for other simple or compound trajectories. Here we test the possibility that the LGMD/DCMD pathway is capable of responding uniquely to complex aspects of object motion, including translation and trajectory changes at different velocities. We found that the response of the DCMD to translational motion initiated in the caudal visual field was a low-amplitude peak in firing rate that occurred before the object crossed 90° azimuth that was invariant to different object velocities. Direct looms at different velocities resulted in peak firing rates that occurred later in time and with greater amplitude for higher velocities. In response to transitions from translational motion to a collision course, the firing rate change depended on both the location within the visual field and the velocity. These results suggest that this pathway is capable of conveying information about multiple properties of a moving object's trajectory.
Accurate and adaptive encoding of complex, dynamic visual information is critical for the survival of many animals. Studies across a range of taxa have investigated behavioral and neuronal responses to objects that represent a threat, such as a looming object approaching along a direct collision course. By investigating neural mechanisms of avoidance behaviors through recording multineuronal activity, it is possible to better understand how complex visual information is represented in circuits that ultimately drive behaviors. We used multichannel electrodes to record from the well‐studied locust nervous system to explore how object motion is reflected in activity of correlated neural activity. We presented locusts (Locusta migratoria) with objects that moved along one of 11 unique trajectories and recorded from descending interneurons within the ventral nerve cord. Spike sorting resulted in 405 discriminated units across 20 locusts and we found that 75% of the units responded to some form of object motion. Dimensionality reduction through principal component (PCA) and dynamic factor (DFA) analyses revealed population vector responses within individuals and common firing trends across the pool of discriminated units, respectively. Population vector composition (PCA) varied with the stimulus and common trends (DFA) showed unique tuning related to changes in the visual size and trajectory of the object through time. These findings demonstrate that this well‐described collision detection system is more complex than previously envisioned and will drive future experiments to explore fundamental principles of how visual information is processed through context‐dependent dynamic ensembles of neurons to initiate and control complex behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.