-Attributed to its advantages of super mechanical flexibility, very low-temperature processing, and compatibility with low cost and high throughput manufacturing, organic thin-film transistor (OTFT) technology is able to bring electrical, mechanical, and industrial benefits to a wide range of new applications by activating nonflat surfaces with flexible displays, sensors, and other electronic functions. Despite both strong application demand and these significant technological advances, there is still a gap to be filled for OTFT technology to be widely commercially adopted. This paper provides a comprehensive review of the current status of OTFT technologies ranging from material, device, process, and integration, to design and system applications, and clarifies the real challenges behind to be addressed.
We present a process for manufacturing printable thin-film transistors (TFTs) that is based on solution processing and direct inkjet printing of polymer semiconductors, dielectrics, and conductors, as well as inorganic nanoparticle conductors. We show that the high device yield, uniformity, and resolution required for thin-film electronic applications can be achieved by using a substrate that contains a surface energy pattern to control the flow and spreading of inkjet droplets. This technique overcomes many of the limitations of current inkjet printing technology related to its limited droplet placement accuracy. We demonstrate the potential of this printing-based TFT manufacturing process with the fabrication of 50 dpi active-matrix, polymer dispersed liquid-crystal and Gyricon Smartpaper electronic paper displays.
A scalable manufacturing process for fabricating active-matrix backplanes on low-cost flexible substrates, a key enabler for electronic-paper displays, is presented. This process is based on solution processing, ink-jet printing, and laser patterning. A multilayer architecture is employed to enable high aperture ratio and array performance. These backplanes were combined with E Ink electrophoretic media to create high-performance displays that have high contrast, are bistable, and can be flexed repeatedly to a radius of curvature of 5 mm
We describe transport measurements on double quantum dot structures formed by trench isolation in a SiGe:Si heterostructure. Three different device geometries are described, and a number of phenomena are observed. Transport measurements at 4.2 K reveal a carrier energy filtering effect accompanying a period doubling in Coulomb oscillations, showing that tunnel barriers can be raised and lowered by application of a gate voltage. Peak splitting in Coulomb oscillations is also observed at 4.2 K, indicating interdot capacitive coupling. The stability diagram for a double dot is mapped out at dilution refrigerator temperatures. In another device, single hole electrometers are fabricated 50 nm away from a double quantum dot, and the ability to measure a single excess charge on the double dot is demonstrated at dilution refrigerator temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.