Winter flounder, Pseudopleuronectes americanus, has emerged as a promising candidate flatfish for cold‐water aquaculture and restocking. Here, juveniles were reared for 8 weeks at three temperatures: 10, 15, and 20°C under 24‐hr light. All fish were imaged at stocking and at 2‐week intervals, where growth was measured as changes in standard length (SL) and body area (BA). By week 2, fish reared at 15 and 20°C were larger than those grown at 10°C. At weeks 4 to 6, fish at 15°C were larger than fish at 20°C. Linear regressions were used to model growth dynamics over time at each temperature. Highly significant linear growth trajectories were detected over time for SL and BA. SL and BA regressions also showed a significant difference among the slopes across temperatures, where comparing slopes showed the best temperature to rear the flounder was 15°C. Weights of fish held at 15°C and 20°C were greater than at 10°C at the termination of the experiment. Within each temperature, the growth rate of malpigmented fish was not different from that of the normally pigmented fish. Overall, growth of winter flounder was comparable to that of other commercially produced flatfish species, providing strong evidence for this flatfish species as a potential species for aquaculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.