This paper is a comprehensive presentation of a framework for the modeling, the simulation and the analysis of power relationships in social organizations, and more generally in systems of organized action. This framework relies on, and slightly extends, the Crozier and Freidber's sociology of organized action, which supports a methodology for understanding why, in an organizational context, people behave as they do. SocLab intends to complement the discursive statement of sociological analyses with a formal formulation easing the objectivization of findings. It consists of a meta-model of organizations, a model of bounded-rational social actors and analytical tools for the study of the internal properties of organizations.
This paper presents an incremental method of parsimonious modelling using intensive and quantitative evaluation. It is applied to a research question in urban geography, namely how well a simple and generic model of a system of cities can reproduce the evolution of Soviet urbanisation. We compared the ability of two models with different levels of complexity to satisfy goals at two levels. The macro-goal is to simulate the evolution of the system's hierarchical structure. The micro-goal is to simulate its micro-dynamics in a realistic way. The evaluation of the models is based on empirical data through a calibration that includes sensitivity analysis using genetic algorithms and distributed computing. We show that a simple model of spatial interactions cannot fully reproduce the observed evolution of Soviet urbanisation from 1959 to 1989. A better fit was achieved when the model's structure was complexified with two mechanisms. Our evaluation goals were assessed through intensive sensitivity analysis. The complexified model allowed us to simulate the evolution of the Soviet urban hierarchy.
In this paper, we present a modelling experiment developed to study systems of cities and processes of urbanisation in large territories over long time spans. Building on geographical theories of urban evolution, we rely on agent-based models to 1) formalise complementary and alternative hypotheses of urbanisation and 2) explore their ability to simulate observed patterns in a virtual laboratory. The paper is therefore divided into two sections : an overview of the mechanisms implemented to represent competing hypotheses used to simulate urban evolution; and an evaluation of the resulting model structures in their ability to simulate-efficiently and parsimoniously-a system of cities (between 1000 and 2000 cities in the Former Soviet Union) over several periods of time (before and after the crash of the USSR). We do so using a modular framework of model-building and evolutionary algorithms for the calibration of several model structures. This project aims at tackling equifinality in systems dynamics by confronting different mechanisms with similar evaluation criteria. It enables the identification of the best-performing models with respect to the chosen criteria by scanning automatically the parameter space along with the space of model structures (the different combinations of mechanisms).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.