Skin denervation was common in Ala97Ser, and degeneration of cutaneous nerve terminals was correlated with the severity of clinical phenotypes and the level of CSF protein.
OBJECTIVESudomotor symptoms are a common component of diabetic autonomic neuropathy, but the pathology of sudomotor innervation and its relationship with glycemic control have remained obscured.RESEARCH DESIGN AND METHODSWe enrolled 42 patients (26 males and 16 females aged 56.64 ± 12.67 years) with diabetic neuropathy defined by symmetric distally predominant sensory symptoms, abnormal nerve conduction studies, and reduced intraepidermal nerve fiber density in the leg. Skin biopsies of the distal leg were immunostained with antiprotein gene product 9.5 for nerve fibers and counterstained with Congo red for sweat glands. Sweat gland innervation index (SGII) was quantified with a new computerized area-based morphometric system.RESULTSProtein gene product 9.5(+) nerve terminals surrounded secretory coils of the sweat glands in the skin of control subjects. Sudomotor denervation was present in diabetic patients, manifesting as depletion of periglandular nerve fibers with lower SGII compared with 42 age- and sex-matched control subjects (2.54 ± 1.87 vs. 4.68 ± 1.51%, P < 0.001). The SGII was correlated with HbA1c (P = 0.011) and was lower in patients with anhidrosis of the feet compared with those with normal sweating of the feet (0.82 ± 0.69 vs. 3.00 ± 1.81%, P = 0.001). Sudomotor denervation was concordant with cardiac autonomic dysfunction as assessed with reduced heart rate variability (P = 0.003).CONCLUSIONSSudomotor denervation is a significant presentation of diabetic neuropathy, and the SGII was associated with HbA1c. A skin biopsy offers a structural assessment of sudomotor innervation.
Sensory symptoms are frequent nonmotor complaints in patients with Parkinson's disease (PD). However, few investigations integrally explored the physiology and pathology of the thermonociceptive pathway in PD. We aim to investigate the involvement of the thermonociceptive pathway in PD.Twenty-eight PD patients (16 men, with a mean age and standard deviation of 65.6 ± 10.7 years) free of neuropathic symptoms and systemic disorders were recruited for the study and compared to 23 age- and gender-matched control subjects (12 men, with a mean age and standard deviation of 65.1 ± 9.9 years). We performed skin biopsy, contact heat-evoked potential (CHEP), and quantitative sensory tests (QST) to study the involvement of the thermonociceptive pathway in PD.The duration of PD was 7.1 ± 3.2 (range 2–17 years) years and the UPDRS part III score was 25.6 ± 9.7 (range 10–48) during the off period. Compared to control subjects, PD patients had reduced intra-epidermal nerve fiber (IENF) density (2.48 ± 1.65 vs 6.36 ± 3.19 fibers/mm, P < 0.001) and CHEP amplitude (18.02 ± 10.23 vs 33.28 ± 10.48 μV, P < 0.001). Twenty-three patients (82.1%) had abnormal IENF densities and 18 (64.3%) had abnormal CHEP. Nine patients (32.1%) had abnormal thermal thresholds in the feet. In total 27 patients (96.4%) had at least 1 abnormality in IENF, CHEP, or thermal thresholds of the foot, indicating dysfunctions in the small-fiber nerve system. In control subjects, CHEP amplitude linearly correlated with IENF density (P < 0.001). In contrast, this relationship disappeared in PD (P = 0.312) and CHEP amplitude was negatively correlated with motor severity of PD independent of age, gender, and anti-PD medication dose (P = 0.036), suggesting the influences of central components on thermonociceptive systems in addition to peripheral small-fiber nerves in PD.The present study suggested impairment of small-fiber sensory system at both peripheral and central levels is an intrinsic feature of PD, and skin biopsy, CHEP, and QST provided an integral approach for assessing such dysfunctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.