Although only part of the information from the x-ray fluorescence geochemical experiment has been analyzed, it is clear that the experiment was highly successful. Significant compositional differences among and possibly within the maria and highlands have been detected. When viewed in the light of analyzed lunar rocks and soil samples, and the data from other lunar orbital experiments (in particular, the Apollo 15 gamma-ray spectroscopy experiment), the results indicate the existence of a differential lunar highland crust, probably feldspathic. This crust appears to be related to the plagioclase-rich materials previously found in the samples from Apollo 11, Apollo 12, Apollo 14, Apollo 15, and Luna 16.
The Mariner 9 infrared spectroscopy experiment has provided goodquality spectra of many areas of Mars, predominantly in the southern hemisphere. Large portions of the thermal emission spectra are significantly affected by dust with a silicon oxide content approximately corresponding to that of an intermediate igneous rock, thus implying that Mars has undergone substantial geochemical differentiation. Derived temperature profiles indicate a warm daytime upper atmosphere with a strong warming over the south polar cap. Atmospheric water vapor is clearly observed over the south polar area and less strongly over other regions.
Infrared spectra obtainedfrom Voyager 2 have provided additional data on the Jovian system, complementing those obtained from Voyager 1. The abundance ratio of ethane to acetylene in Jupiter's atmosphere appears to be about three times larger in the polar regions than at lower latitudes. A decidedly hemispherical asymmetry exists, with somewhat higher ratios prevailing in northern latitudes. An overall increase in the abundance ratio by a factor of about 1.7 appears to have occurred between the Voyager 1 and 2 encounters. Global brightness temperature maps of Jupiter at 226 and 602 cm(-1) exhibit a large amount of local- and planetary-scale structure, as well as temporal variability. Although heterogeneous cloud structure and ammonia concentration in the lower troposphere may contribute to the appearance of the 226-cm(-1) map, the detail in the 602-cm(-1) maps probably represents the actual horizontal thermal structure near the tropopause and suggests that dynamical heating and cooling processes are important. Low-latitude surface temperatures on the Galilean satellites rangefrom approximately 80 K on the dark sides to 155 K at the subsolar point on Callisto. Below a thin insulating layer, the thermal inertia of Callisto is somewhat greater than that of Earth's moon. Upper limits on the infrared optical depth of the Jovian ring rangingfrom approximately 3 x 10(-4) at 250 cm(-1) to 3 x 10(-3) at 600 cm(-1) have been found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.