Parsimonious Gaussian mixture models are developed using a latent Gaussian model which is closely related to the factor analysis model. These models provide a unified modeling framework which includes the mixtures of probabilistic principal component analyzers and mixtures of factor of analyzers models as special cases.In particular, a class of eight parsimonious Gaussian mixture models which are based on the mixtures of factor analyzers model are introduced and the maximum likelihood estimates for the parameters in these models are found using an AECM algorithm. The class of models includes parsimonious models that have not previously been developed.These models are applied to the analysis of chemical and physical properties of Italian wines and the chemical properties of coffee; the models are shown to give excellent clustering performance.
estimates of sarcopenia prevalence vary from 9.9 to 40.4%, depending on the definition used. Significant differences in prevalence exist within definitions across populations. This lack of agreement between definitions needs to be better understood before sarcopenia can be appropriately used in a clinical context.
We introduce a mixture of generalized hyperbolic distributions as an alternative to the ubiquitous mixture of Gaussian distributions as well as their near relatives of which the mixture of multivariate t and skew-t distributions are predominant. The mathematical development of our mixture of generalized hyperbolic distributions model relies on its relationship with the generalized inverse Gaussian distribution. The latter is reviewed before our mixture models are presented along with details of the aforesaid reliance. Parameter estimation is outlined within the expectation-maximization framework before the clustering performance of our mixture models is illustrated via applications on simulated and real data. In particular, the ability of our models to recover parameters for data from underlying Gaussian and skew-t distributions is demonstrated. Finally, the role of Generalized hyperbolic mixtures within the wider modelbased clustering, classification, and density estimation literature is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.