We introduce a mixture of generalized hyperbolic distributions as an alternative to the ubiquitous mixture of Gaussian distributions as well as their near relatives of which the mixture of multivariate t and skew-t distributions are predominant. The mathematical development of our mixture of generalized hyperbolic distributions model relies on its relationship with the generalized inverse Gaussian distribution. The latter is reviewed before our mixture models are presented along with details of the aforesaid reliance. Parameter estimation is outlined within the expectation-maximization framework before the clustering performance of our mixture models is illustrated via applications on simulated and real data. In particular, the ability of our models to recover parameters for data from underlying Gaussian and skew-t distributions is demonstrated. Finally, the role of Generalized hyperbolic mixtures within the wider modelbased clustering, classification, and density estimation literature is discussed.
A mixture of shifted asymmetric Laplace distributions is introduced and used for clustering and classification. A variant of the EM algorithm is developed for parameter estimation by exploiting the relationship with the generalized inverse Gaussian distribution. This approach is mathematically elegant and relatively computationally straightforward. Our novel mixture modelling approach is demonstrated on both simulated and real data to illustrate clustering and classification applications. In these analyses, our mixture of shifted asymmetric Laplace distributions performs favourably when compared to the popular Gaussian approach. This work, which marks an important step in the non-Gaussian model-based clustering and classification direction, concludes with discussion as well as suggestions for future work.
Mixtures of skew-t distributions offer a flexible choice for model-based clustering. A mixture model of this sort can be implemented using a variety of formulations of the skew-t distribution. Herein we develop a mixture of skew-t factor analyzers model for clustering of high-dimensional data using a flexible formulation of the skew-t distribution. Methodological details of our approach, which represents an extension of the mixture of factor analyzers model to a flexible skew-t distribution, are outlined and details of parameter estimation are provided. Clustering results are illustrated and compared to an alternative formulation of the mixture of skew-t factor analyzers model as well as the mixture of factor analyzers model.
An expanded family of mixtures of multivariate power exponential distributions is introduced. While fitting heavy-tails and skewness have received much attention in the model-based clustering literature recently, we investigate the use of a distribution that can deal with both varying tail-weight and peakedness of data. A family of parsimonious models is proposed using an eigen-decomposition of the scale matrix. A generalized expectation-maximization algorithm is presented that combines convex optimization via a minorization-maximization approach and optimization based on accelerated line search algorithms on the Stiefel manifold. Lastly, the utility of this family of models is illustrated using both toy and benchmark data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.