This work is focused on the effect of natural defect on the fatigue resistance of a laser powder bed fusion additively manufactured Ti-6Al-4V titanium. To reveal the fatigue strength variability and its sensitivity to the defect size, push-pull fatigue tests have been undertaken on specimens with different sizes of highly loaded volume of material. In order to easily vary the size of the highly loaded volume, specimens containing different numbers of surface hemispherical shape holes of 600 µm in diameter have been tested. This method also allowed to test small volume which triggered crack initiation from microstructural features.The fatigue damage mechanisms observed and the average natural defect size measured on the failure surfaces depend on the size of the highly stressed region. A higher fatigue strength is observed for smaller stressed volumes and defect free regions. To reduce the impact lack-offusion on fatigue and increase the probability of triggering crack initiation from a microstructural feature, the specimens were built in the horizontal direction. For specimens where fatigue cracks initiated at natural discontinuities, the results reported in a Kitagawa-Takahashi diagram revealed a critical defect size ( √ area) in the range of 30 µm. In addition, a probabilistic approach based on the weakest link theory is proposed. The model describes a probabilistic Kitagawa-Takahashi diagram accounting for the size of both the highly stressed volume and the natural defect.
The advent of new manufacturing technologies such as additive manufacturing deeply impacts the approach for the design of medical devices. It is now possible to design custom-made implants based on medical imaging, with complex anatomic shape, and to manufacture them. In this study, two geometrical configurations of implant devices are studied, standard and anatomical. The comparison highlights the drawbacks of the standard configuration, which requires specific forming by plastic strain in order to be adapted to the patient's morphology and induces stress field in bones without mechanical load in the implant. The influence of low elastic modulus of the materials on stress distribution is investigated. Two biocompatible alloys having the ability to be used with SLM additive manufacturing are considered, commercial Ti-6Al-4V and Ti-26Nb. It is shown that beyond the geometrical aspect, mechanical compatibility between implants and bones can be significantly improved with the modulus of Ti-26Nb implants compared with the Ti-6Al-4V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.