Electronic systems that use rugged lightweight plastics potentially offer attractive characteristics (low-cost processing, mechanical flexibility, large area coverage, etc.) that are not easily achieved with established silicon technologies. This paper summarizes work that demonstrates many of these characteristics in a realistic system: organic active matrix backplane circuits (256 transistors) for large (Ϸ5 ؋ 5-inch) mechanically flexible sheets of electronic paper, an emerging type of display. The success of this effort relies on new or improved processing techniques and materials for plastic electronics, including methods for (i) rubber stamping (microcontact printing) high-resolution (Ϸ1 m) circuits with low levels of defects and good registration over large areas, (ii) achieving low leakage with thin dielectrics deposited onto surfaces with relief, (iii) constructing highperformance organic transistors with bottom contact geometries, (iv) encapsulating these transistors, (v) depositing, in a repeatable way, organic semiconductors with uniform electrical characteristics over large areas, and (vi) low-temperature (Ϸ100°C) annealing to increase the on͞off ratios of the transistors and to improve the uniformity of their characteristics. The sophistication and flexibility of the patterning procedures, high level of integration on plastic substrates, large area coverage, and good performance of the transistors are all important features of this work. We successfully integrate these circuits with microencapsulated electrophoretic ''inks'' to form sheets of electronic paper.T he backplane circuit consists of a square array of 256 suitably interconnected p-channel transistors. Fig. 1 shows the circuit layout. Fig. 2 presents a cross-sectional illustration of a transistor and a top view of a unit cell. The completed display (total thickness Ϸ1 mm) comprises a transparent frontplane electrode of indium tin oxide (ITO) and a thin unpatterned layer of flexible electronic ''ink'' mounted against a sheet that supports square pixel electrode pads and pinouts; these pixel pads attach, via a conductive adhesive, to the back planes. Each transistor functions as a switch that locally controls the color of the ink, which consists of a layer of polymeric microcapsules filled with a suspension of charged pigments in a colored fluid (1, 2). In each of the four quadrants of the display, transistors in a given column have connected gates, and those in a given row have connected source electrodes. Applying a voltage to a column (gate) and a row (source) electrode turns on the transistor located at the cell where these electrodes intersect. Activating the transistor generates an electric field between the frontplane ITO and the corresponding pixel electrode. This field causes movement of a pigment within the microcapsules, which changes the color of the pixel, as observed through the ITO: when the pigments flow to the ITO side of the capsules, the color of the pigment (white in this case) determines the color of the pixel; when they ...
A new electro-optical material based on nematic liquid crystal dispersed in a polymer matrix has recently been introduced by Fergason. This technology (termed NCAP, for nematic curvilinear aligned phase) is suitable for making very large area (thousands of square centimeter) light valves and displays. The device consists of micron size droplets of liquid crystal dispersed in and surrounded by a polymer film. Light passing through the film in the absence of an applied field is strongly forward scattered, giving a milky, translucent film. Application of an electric field across the liquid crystal/polymer film places the film in a highly transparent state. Pleochroic dyes may be employed in the system in order to achieve controllable light absorption as well as scattering. Microscopically, it is shown that the liquid-crystal director lies preferentially parallel to the polymer wall, leading to a bipolar-like configuration of the liquid-crystal directors within the droplet. The symmetry axes of the droplets are randomly oriented in the unpowered, scattering state, but align parallel to the field in the powered, transparent state. The electric field required to reorient a given droplet varies inversely with the diameter of that droplet, and it is shown that the macroscopic electro-optical properties of the film can be modeled if the distribution of liquid-crystal droplet sizes is known.
Abstract— The commercial success of monochrome electronic paper (e‐Paper) is now propelling the development of next‐generation flexible, video, and color e‐Paper products. Unlike the early battles in the 1980s and 1990s between transmissive and emissive display technologies, there is a extraordinary diversity of technologies vying to become the next generation of e‐Paper. A critical review of all major e‐Paper technologies, including a technical breakdown of the performance limitations based on device physics and commentary on possible future breakthroughs, is presented. In addition, the visual requirements for color e‐Paper are provided and compared to standards used in conventional print. It is concluded that researchers have much work remaining in order to bridge the significant gap between reflective electronic displays and print‐on‐paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.