Osteocytes represent the most abundant cellular component of mammalian bones with important functions in bone mass maintenance and remodeling. To elucidate the differential gene expression between osteoblasts and osteocytes we completed a comprehensive analysis of their gene profiles. Selective identification of these two mature populations was achieved by utilization of visual markers of bone lineage cells. We have utilized dual GFP reporter mice in which osteocytes are expressing GFP (topaz) directed by the DMP1 promoter, while osteoblasts are identified by expression of GFP (cyan) driven by 2.3kb of the Col1a1 promoter. Histological analysis of 7-day-old neonatal calvaria confirmed the expression pattern of DMP1GFP in osteocytes and Col2.3 in osteoblasts and osteocytes. To isolate distinct populations of cells we utilized fluorescent activated cell sorting (FACS). Cells suspensions were subjected to RNA extraction, in vitro transcription and labeling of cDNA and gene expression was analyzed using the Illumina WG-6v1 BeadChip.Following normalization of raw data from four biological replicates, 3444 genes were called present in all three sorted cell populations: GFP negative, Col2.3cyan + (osteoblasts), and DMP1topaz + (preosteocytes and osteocytes). We present the genes that showed in excess of a 2-fold change for gene expression between DMP1topaz + and Col2.3cyan + cells. The selected genes were classified and grouped according to their associated gene ontology terms. Genes clustered to osteogenesis and skeletal development such as Bmp4, Bmp8a, Dmp1, Enpp1, Phex and Ank were highly expressed in DMP1topaz + cells. Most of the genes encoding extracellular matrix components and secreted proteins had lower expression in DMP1topaz + cells, while most of the genes encoding plasma membrane proteins were increased. Interestingly a large number of genes associated with muscle development and function and with neuronal phenotype were increased in DMP1topaz + cells, indicating some new aspects of osteocyte biology. Although a large number of genes differentially expressed in DMP1topaz + and Col2.3cyan + cells in our study have already been assigned to bone Contact Information: Ivo Kalajzic, Department of Reconstructive Sciences, MC 3705, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06032. Tel.: 860-679-6051; Fax: 860-679-2910; ikalaj@neuron.uchc.edu. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
NIH Public Access
Author ManuscriptBone. Author manuscript; available in PMC 2010 October 1.
NIH-PA Author ManuscriptNIH-PA Author Manuscript NI...
The kinase/endonuclease inositol requiring enzyme 1 (IRE1α), one of the sensors of unfolded protein accumulation in the endoplasmic reticulum that triggers the unfolded protein response (UPR), has been investigated as an anticancer target. We identified potent allosteric inhibitors of IRE1α endonuclease activity that bound to the kinase site on the enzyme. Structure-activity relationship (SAR) studies led to 16 and 18, which were selective in kinase screens and were potent against recombinant IRE1α endonuclease as well as cellular IRE1α. The first X-ray crystal structure of a kinase inhibitor (16) bound to hIRE1α was obtained. Screening of native tumor cell lines (>300) against selective IRE1α inhibitors failed to demonstrate any effect on cellular viability. These results suggest that IRE1α activity is not essential for viability in most tumor cell lines, in vitro, and that interfering with the survival functions of the UPR may not be an effective strategy to block tumorigenesis.
The enantiospecific total synthesis of natural roseophilin has been completed in 7.0% overall yield over 15 steps by means of an asymmetric cyclopentannelation. This establishes the absolute configuration of the natural product as 22R,23R. Cyclopentenone (+)-12 was prepared in 78% yield and 86% ee in the key step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.