The meridional overturning circulation for the Atlantic, Pacific, and Indian Oceans is computed from absolute geostrophic velocity estimates based on hydrographic data and from climatological Ekman transports. The Atlantic overturn includes the expected North Atlantic Deep Water formation (including Labrador Sea Water and Nordic Sea Overflow Water), with an amplitude of about 18 Sv through most of the Atlantic and an error of the order of 3-5 Sv (1 Sv ϵ 10 6 m 3 s Ϫ1). The Lower Circumpolar Deep Water (Antarctic Bottom Water) flows north with about 8 Sv of upwelling and a southward return in the South Atlantic, and 6 Sv extending to and upwelling in the North Atlantic. The northward flow of 8 Sv in the upper layer in the Atlantic (sea surface through the Antarctic Intermediate Water) is transformed to lower density in the Tropics before losing buoyancy in the Gulf Stream and North Atlantic Current. The Pacific overturning streamfunction includes 10 Sv of Lower Circumpolar Deep Water flowing north into the South Pacific to upwell and return southward as Pacific Deep Water, and a North Pacific Intermediate Water cell of 2 Sv. The northern North Pacific has no active deep water formation at the sea surface, but in this analysis there is downwelling from the Antarctic Intermediate Water into the Pacific Deep Water, with upwelling in the Tropics. For global Southern Hemisphere overturn across 30ЊS, the overturning is separated into a deep and a shallow overturning cell. In the deep cell, 22-27 Sv of deep water flows southward and returns northward as bottom water. In the shallow cell, 9 Sv flows southward at low density and returns northward just above the intermediate water density. In all three oceans, the Tropics appear to dominate upwelling across isopycnals, including the migration of the deepest waters upward to the thermocline in the Indian and Pacific. Estimated diffusivities associated with this tropical upwelling are the same order of magnitude in all three oceans. It is shown that vertically varying diffusivity associated with topography can produce deep downwelling in the absence of external buoyancy loss. The rate of such downwelling for the northern North Pacific is estimated as 2 Sv at most, which is smaller than the questionable downwelling derived from the velocity analysis.
[1] The processes that lead to the transformation and origin of the eastern North Atlantic Subpolar Mode Waters (SPMW) are investigated from observational data using an extended Walin framework. Air-sea flux data from the National Oceanography Center, Southampton (NOCS), and hydrographic data from the A24 cruise collected during the World Ocean Circulation Experiment (WOCE) are used to estimate the contribution of diapycnal and isopycnal fluxes to the density classes that include SPMW. Surface diapycnal volume flux is the dominant source of waters in the SPMW density. In the North Atlantic subpolar gyre the diapycnal volume flux occurs along the main branches of the North Atlantic Current (NAC) and it has an average transport of 14 ± 6.5 Sv, with a maximum of 21.5 Sv across the 27.35s q isopycnal. The regional distribution of the diapycnal flux on isopycnal surfaces is computed to identify the areas with the largest diapycnal flux. These regions coincide with the location of SPMW based on potential vorticity. The surface diapycnal flux is associated with obduction and subduction through the permanent pycnocline. Therefore, the water involved in the transformation of SPMWs is continuously exchanged with the ocean interior. In addition, we suggest that subduction is not associated with smooth advection from the mixed layer to the ocean interior, but is water mass loss entrainment into the deep overflows of the subpolar gyre. The isopycnal component of the SPMW throughput is estimated from the geostrophic transport across the A24 section from Greenland to Scotland and is 10% to 40% of the diapycnal flux.
In the past two decades, the Argo Program has collected, processed, and distributed over two million vertical profiles of temperature and salinity from the upper two kilometers of the global ocean. A similar number of subsurface velocity observations near 1,000 dbar have also been collected. This paper recounts the history of the global Argo Program, from its aspiration arising out of the World Ocean Circulation Experiment, to the development and implementation of its instrumentation and telecommunication systems, and the various technical problems encountered. We describe the Argo data system and its quality control procedures, and the gradual changes in the vertical resolution and spatial coverage of Argo data from 1999 to 2019. The accuracies of the float data have been assessed by comparison with high-quality shipboard measurements, and are concluded to be 0.002 • C for temperature, 2.4 dbar for pressure, and 0.01 PSS-78 for salinity, after delayed-mode adjustments. Finally, the challenges faced by the vision of an expanding Argo Program beyond 2020 are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.