SUMMARY
Effector T cell differentiation requires the simultaneous integration of multiple, and sometimes opposing, cytokine signals. We demonstrate that mTOR plays a role in dictating the outcome of T cell fate. mTOR deficient T cells display normal activation and IL-2 production upon initial stimulation. However, such cells fail to differentiate into Th1, Th2 or Th17 effector T cells under skewing conditions. The inability to differentiate is associated with a decrease in STAT activation and failure to upregulate lineage specific transcription factors. Under all normally activating conditions, T cells lacking mTOR differentiate into Foxp3+ regulatory cells. This differentiation is associated with hyperactive Smad3 activation in the absence of exogenous TGF-β. Surprisingly, T cells in which TORC1 activity has been selectively deleted do not divert to a regulatory T cell pathway, revealing an unappreciated role for TORC2 signaling in preventing the generation of regulatory T cells. Overall our studies suggest that differential TORC1 and TORC2 signaling regulate decisions between effector and regulatory T cell lineage commitment.
Whether TCR engagement leads to activation or tolerance is determined by the concomitant delivery of multiple accessory signals, cytokines, and environmental cues. In this study, we demonstrate that the mammalian target of rapamycin (mTOR) integrates these signals and determines the outcome of TCR engagement with regard to activation or anergy. In vitro, Ag recognition in the setting of mTOR activation leads to full immune responses, whereas recognition in the setting of mTOR inhibition results in anergy. Full T cell activation is associated with an increase in the phosphorylation of the downstream mTOR target S6 kinase 1 at Thr421/Ser424 and an increase in the mTOR-dependent cell surface expression of transferrin receptor (CD71). Alternatively, the induction of anergy results in markedly less S6 kinase 1 Thr421/Ser424 phosphorylation and CD71 surface expression. Likewise, the reversal of anergy is associated not with proliferation, but rather the specific activation of mTOR. Importantly, T cells engineered to express a rapamycin-resistant mTOR construct are resistant to anergy induction caused by rapamycin. In vivo, mTOR inhibition promotes T cell anergy under conditions that would normally induce priming. Furthermore, by examining CD71 surface expression, we are able to distinguish and differentially isolate anergic and activated T cells in vivo. Overall, our data suggest that by integrating environmental cues, mTOR plays a central role in determining the outcome of Ag recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.