Regulatory T cells (Tregs) limit autoimmunity but also attenuate the magnitude of antipathogen and antitumor immunity. Understanding the mechanism of Treg function and therapeutic manipulation of Tregs in vivo requires identification of Treg-selective receptors. A comparative analysis of gene expression arrays from antigen-specific CD4(+) T cells differentiating to either an effector/memory or a regulatory phenotype revealed Treg-selective expression of LAG-3, a CD4-related molecule that binds MHC class II. Antibodies to LAG-3 inhibit suppression by induced Tregs both in vitro and in vivo. Natural CD4(+)CD25(+) Tregs express LAG-3 upon activation, which is significantly enhanced in the presence of effector cells, whereas CD4(+)CD25(+) Tregs from LAG-3(-/-) mice exhibit reduced regulatory activity. Lastly, ectopic expression of LAG-3 on CD4(+) T cells significantly reduces their proliferative capacity and confers on them suppressor activity toward effector T cells. We propose that LAG-3 marks regulatory T cell populations and contributes to their suppressor activity.
T cell receptor engagement in the absence of proper accessory signals leads to T cell anergy. E3 ligases are involved in maintaining the anergic state. However, the specific molecules responsible for the induction of anergy have yet to be elucidated. Using microarray analysis we have identified here early growth response gene 2 (Egr-2) and Egr-3 as key negative regulators of T cell activation. Overexpression of Egr2 and Egr3 was associated with an increase in the E3 ubiquitin ligase Cbl-b and inhibition of T cell activation. Conversely, T cells from Egr3(-/-) mice had lower expression of Cbl-b and were resistant to in vivo peptide-induced tolerance. These data support the idea that Egr-2 and Egr-3 are involved in promoting a T cell receptor-induced negative regulatory genetic program.
To understand the T cell response to prostate cancer, we created transgenic mice that express a model antigen in a prostate-restricted pattern and crossed these animals to TRAMP mice that develop spontaneous prostate cancer. Adoptive transfer of prostate-specific CD4 T cells shows that, in the absence of prostate cancer, the prostate gland is mostly ignored. Tumorigenesis allows T cell recognition of the prostate gland--but this recognition is tolerogenic, resulting in abortive proliferation and ultimately in hyporesponsiveness at the systemic level. Androgen ablation (the most common treatment for metastatic prostate cancer) was able to mitigate this tolerance--allowing prostate-specific T cells to expand and develop effector function after vaccination. These results suggest that immunotherapy for prostate cancer may be most efficacious when administered after androgen ablation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.