This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. Potato (Solanum tuberosum L.) is one of the most important food crops in the world and provides essential nutrients. With an aim to develop potato varieties for functional food or nutraceutial applications, we have conducted metabolomic profiling, total phenolics, chlorogenic acid, anthocyanins, and glycoalkaloids analyses on 20 selected potato clones within the Canadian potato breeding program of Agriculture and Agri-Food Canada. Pigmented potatoes in general contain higher levels of phenolic components, including chlorogenic acid and anthocyanins. Levels of phenolics were retained with granulation processing of pigmented potato tubers, but glycoalkaloids were significantly reduced with granulation. The pigmented potatoes also have higher antioxidant activity reaching up to 35% of that for berries, measured as their potency in scavenging DPPH radicals. Extracts of the 20 potato clones (peel, tuber, and granule) were also evaluated for in vitro effects on liver LDL cholesterol uptake and protection of cortical neurons from cell death caused by oxygen glucose deprivation (OGD). These potato extracts in general showed mild activity in enhancing LDL cholesterol uptake in liver HepG2 cells, and also protected cortical neurons against OGD induced cell death, with extracts from granules of six of the potato clones showing significant neuroprotective effects. The bioactive components are not dependent on pigmentation of potato clones. These novel bioactivities identified in potatoes warrant in-depth investigations in the future. Taken together, our results provide further evidence for the enhanced health beneficial components in potato. Crown
We report here neuroprotective and anti-inflammatory effects of a flavonoid-enriched fraction isolated from the peel of Northern Spy apples (AF4) in a mouse of model of hypoxic-ischemic (HI) brain damage. Oral administration of AF4 (50 mg/kg, once daily for 3 days) prior to 50 min of HI completely prevented motor performance deficits assessed 14 days later that were associated with marked reductions in neuronal cell loss in the dorsal hippocampus and striatum. Pre-treatment with AF4 (5, 10, 25 or 50 mg/kg, p.o.; once daily for 3 days) produced a dose-dependent reduction in HI-induced hippocampal and striatal neuron cell loss, with 25 mg/kg being the lowest dose that achieved maximal neuroprotection. Comparison of the effects of 1, 3 or 7 doses of AF4 (25 mg/kg; p.o.) prior to HI revealed that at least 3 doses of AF4 were required before HI to reduce neuronal cell loss in both the dorsal hippocampus and striatum. Quantitative RT-PCR measurements revealed that the neuroprotective effects of AF4 (25 mg/kg; p.o.; once daily for 3 days) in the dorsal hippocampus were associated with a suppression of HI-induced increases in the expression of IL-1β, TNF-α and IL-6. AF4 pre-treatment enhanced mRNA levels for pro-survival proteins such as X-linked inhibitor of apoptosis and erythropoietin following HI in the dorsal hippocampus and striatum, respectively. Primary cultures of mouse cortical neurons incubated with AF4 (1 µg/ml), but not the same concentrations of either quercetin or quercetin-3-O-glucose or its metabolites, were resistant to cell death induced by oxygen glucose deprivation. These findings suggest that the inhibition of HI-induced brain injury produced by AF4 likely involves a transcriptional mechanism resulting from the co-operative actions of various phenolics in this fraction which not only reduce the expression of pro-inflammatory mediators but also enhance pro-survival gene signalling.
An altered polyamine system has been suggested to play a key role in mood disorders and suicide, a hypothesis corroborated by the evidence that lithium inhibits the polyamine mediated stress response in the rat brain. Recent post-mortem studies have shown that spermidine/spermine N1-acetyltransferase (SAT1), the key regulator of cellular polyamine content, is under-expressed in brains from suicide victims compared to controls. In our study we tested the effect of in vitro lithium treatment on SAT1 gene and protein expression in B lymphoblastoid cell lines (BLCLs) from bipolar disorder (BD) patients who committed suicide (and for which BLCLs were collected prior to their death), BD patients with high and low risk of suicide and a sample of non-psychiatric controls. Baseline mRNA levels were similar in the four groups of subjects (p > 0.05). Lithium had no effect in suicide completers (p > 0.05) while it significantly increased SAT1 expression in the high risk (p < 0.001) and low risk (p < 0.01) groups as well as in controls (p < 0.001). Protein and mRNA levels were not correlated; lithium significantly reduced protein levels only in the control sample (p < 0.05). Our findings suggest that SAT1 transcription is influenced by lithium and that this effect is altered in BD patients who completed suicide, further supporting a role for polyamines in suicide.
X-linked inhibitor of apoptosis (XIAP) protects and preserves the function of neurons in both in vitro and in vivo models of excitotoxicity. Since calcium (Ca(2+)) overload is a pivotal event in excitotoxic neuronal cell death, we have determined whether XIAP over-expression influences Ca(2+)-signaling in primary cultures of mouse cortical neurons. Using cortical neuron cultures derived from wild-type (Wt) mice transiently transfected with XIAP or from transgenic mice that over-express XIAP, we show that XIAP opposes the rise in intracellular Ca(2+) concentration by a variety of triggers. Relative to control neurons, XIAP over-expression produced a slight, but significant, elevation of resting Ca(2+) concentrations. By contrast, the rise in intracellular Ca(2+) concentrations produced by N-methyl-D-aspartate receptor stimulation and voltage gated Ca(2+) channel activation were markedly attenuated by XIAP over-expression. The release of Ca(2+) from intracellular stores induced by the sarco/endoplasmic reticulum Ca(2+) ATPase inhibitor thapsigargin was also inhibited in neurons transiently transfected with XIAP. The pan-caspase inhibitor zVAD did not, however, diminish the rise in intracellular Ca(2+) concentrations elicited by L-glutamate suggesting that XIAP influences Ca(2+) signaling in a caspase-independent manner. Taken together, these findings demonstrate that the ability of XIAP to block excessive rises in intracellular Ca(2+) by a variety of triggers may contribute to the neuroprotective effects of this anti-apoptotic protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.