For many species, geographical ranges are expanding toward the poles in response to climate change, while remaining stable along range edges nearest the equator. Using long-term observations across Europe and North America over 110 years, we tested for climate change-related range shifts in bumblebee species across the full extents of their latitudinal and thermal limits and movements along elevation gradients. We found cross-continentally consistent trends in failures to track warming through time at species' northern range limits, range losses from southern range limits, and shifts to higher elevations among southern species. These effects are independent of changing land uses or pesticide applications and underscore the need to test for climate impacts at both leading and trailing latitudinal and thermal limits for species.
We present allelematch, an R package, to automate the identification of unique multilocus genotypes in data sets where the number of individuals is unknown, and where genotyping error and missing data may be present. Such conditions commonly occur in noninvasive sampling protocols. Output from the software enables a comparison of unique genotypes and their matches, and facilitates the review of differences between profiles. The software has a variety of applications in molecular ecology, and may be valuable where a large number of samples must be processed, unique genotypes identified, and repeated observations made over space and time. We used simulations to assess the performance of allelematch and found that it can reliably and accurately determine the correct number of unique genotypes (± 3%) across a broad range of data set properties. We found that the software performs with highest accuracy when genotyping error is below 4%. The R package is available from the Comprehensive R Archive Network (http://cran.r-project.org/). Supplementary documentation and tutorials are provided.
Summary1. Landscape genetics studies using neutral markers have focused on the relationship between gene flow and landscape features. Spatial patterns in the genetic distances among individuals may reflect spatially uneven patterns of gene flow caused by landscape features that influence movement and dispersal. 2. We present a method and software for identifying spatial neighbourhoods in genetic distance data that adopts a regression framework where the predictors are generated using Moran's eigenvectors maps (MEM), a multivariate technique developed for spatial ecological analyses and recommended for genetic applications. 3. Using simulated genetic data, we show that our MEMGENE method can recover patterns reflecting the landscape features that influenced gene flow. We also apply MEMGENE to genetic data from a highly vagile ungulate population and demonstrate spatial genetic neighbourhoods aligned with a river likely to reduce, but not eliminate, gene flow. 4. We developed the MEMGENE package for R in order to detect and visualize relatively weak or cryptic spatial genetic patterns and aid researchers in generating hypotheses about the ecological processes that may underlie these patterns. MEMGENE provides a flexible set of R functions that can be used to modify the analysis. Detailed supplementary documentation and tutorials are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.