Summary Background Butyrate, propionate and acetate are short chain fatty acids (SCFA), important for maintaining a healthy colon and are considered as protective in colorectal carcinogenesis. However, they may also regulate immune responses and the composition of the intestinal microbiota. Consequently, their importance in a variety of chronic inflammatory diseases is emerging. Aims To review the physiology and metabolism of SCFA in humans, cellular and molecular mechanisms by which SCFA may act in health and disease, and approaches for therapeutic delivery of SCFA. Methods A PubMed literature search was conducted for clinical and pre‐clinical studies using search terms: ‘dietary fibre’, short‐chain fatty acids’, ‘acetate’, ‘propionate’, ‘butyrate’, ‘inflammation’, ‘immune’, ‘gastrointestinal’, ‘metabolism’. Results A wide range of pre‐clinical evidence supports roles for SCFA as modulators of not only colonic function, but also multiple inflammatory and metabolic processes. SCFA are implicated in many autoimmune, allergic and metabolic diseases. However, translating effects of SCFA from animal studies to human disease is limited by physiological and dietary differences and by the challenge of delivering sufficient amounts of SCFA to the target sites that include the colon and the systemic circulation. Development of novel targeted approaches for colonic delivery, combined with postbiotic supplementation, may represent desirable strategies to achieve adequate targeted SCFA delivery. Conclusions There is a large array of potential disease‐modulating effects of SCFA. Adequate targeted delivery to the sites of action is the main limitation of such application. The ongoing development and evaluation of novel delivery techniques offer potential for translating promise to therapeutic benefit.
Recent evidence supports a role for the gut microbiota in hypertension, but whether ambulatory blood pressure is associated with gut microbiota and their metabolites remains unclear. We characterized the function of the gut microbiota, their metabolites and receptors in untreated human hypertensive participants in Australian metropolitan and regional areas. Ambulatory blood pressure, fecal microbiome predicted from 16S rRNA gene sequencing, plasma and fecal metabolites called short-chain fatty acid, and expression of their receptors were analyzed in 70 untreated and otherwise healthy participants from metropolitan and regional communities. Most normotensives were female (66%) compared with hypertensives (35%, P <0.01), but there was no difference in age between the groups (59.2±7.7 versus 60.3±6.6 years old). Based on machine learning multivariate covariance analyses of de-noised amplicon sequence variant prevalence data, we determined that there were no significant differences in predicted gut microbiome α- and β-diversity metrics between normotensives versus essential or masked hypertensives. However, select taxa were specific to these groups, notably Acidaminococcus spp ., Eubacterium fissicatena, and Muribaculaceae were higher, while Ruminococcus and Eubacterium eligens were lower in hypertensives. Importantly, normotensive and essential hypertensive cohorts could be differentiated based on gut microbiome gene pathways and metabolites. Specifically, hypertensive participants exhibited higher plasma acetate and butyrate, but their immune cells expressed reduced levels of short-chain fatty acid-activated GPR43 (G-protein coupled receptor 43). In conclusion, gut microbial diversity did not change in essential hypertension, but we observed a significant shift in microbial gene pathways. Hypertensive subjects had lower levels of GPR43, putatively blunting their response to blood pressure-lowering metabolites.
Hypertension is a complex and modifiable condition in which environmental factors contribute to both onset and progression. Recent evidence has accumulated for roles of diet and the gut microbiome as environmental factors in blood pressure regulation. However, this is complex because gut microbiomes are a unique feature of each individual reflecting that individual’s developmental and environmental history creating caveats for both experimental models and human studies. Here, we describe guidelines for conducting gut microbiome studies in experimental and clinical hypertension. We provide a complete guide for authors on proper design, analyses, and reporting of gut microbiota/microbiome and metabolite studies and checklists that can be used by reviewers and editors to support robust reporting and interpretation. We discuss factors that modulate the gut microbiota in animal (eg, cohort, controls, diet, developmental age, housing, sex, and models used) and human studies (eg, blood pressure measurement and medication, body mass index, demographic characteristics including age, cultural identification, living structure, sex and socioeconomic environment, and exclusion criteria). We also provide best practice advice on sampling, storage of fecal/cecal samples, DNA extraction, sequencing methods (including metagenomics and 16S rRNA), and computational analyses. Finally, we discuss the measurement of short-chain fatty acids, metabolites produced by the gut microbiota, and interpretation of data. These guidelines should support better transparency, reproducibility, and translation of findings in the field of gut microbiota/microbiome in hypertension and cardiovascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.