We consider a multiferroic chain with a linear magnetoelectric coupling induced by electrostatic screening at the ferroelectric/ferromagnet interface. We study theoretically the dynamic ferroelectric and magnetic response to external magnetic and electric fields by utilizing an approach based on coupled Landau-Khalatnikov and finite-temperature Landau-Lifshitz-Gilbert equations. Additionally, we make comparisons with Monte Carlo calculations. It is demonstrated that for material parameters corresponding to BaTiO(3)/Fe the polarization and the magnetization are controllable by external magnetic and electric fields, respectively.
Understanding the multiferroic coupling is one of the key issues in the field of multiferroics. As shown here theoretically, the ferromagnetic resonance (FMR) renders possible an access to the magnetoelectric coupling coefficient in composite multiferroics. This we evidence by a detailed analysis and numerical calculations of FMR in an unstrained chain of BaTiO3 in the tetragonal phase in contact with Fe, including the effect of depolarizing field. The spectra of the absorbed power in FMR are found to be sensitive to the orientation of the interface electric polarization and to an applied static electric field. Here we propose a method for measuring the magnetoelectric coupling coefficient by means of FMR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.