Position statementThe International Society of Sports Nutrition (ISSN) provides an objective and critical review related to the intake of protein for healthy, exercising individuals. Based on the current available literature, the position of the Society is as follows:An acute exercise stimulus, particularly resistance exercise, and protein ingestion both stimulate muscle protein synthesis (MPS) and are synergistic when protein consumption occurs before or after resistance exercise.For building muscle mass and for maintaining muscle mass through a positive muscle protein balance, an overall daily protein intake in the range of 1.4–2.0 g protein/kg body weight/day (g/kg/d) is sufficient for most exercising individuals, a value that falls in line within the Acceptable Macronutrient Distribution Range published by the Institute of Medicine for protein.Higher protein intakes (2.3–3.1 g/kg/d) may be needed to maximize the retention of lean body mass in resistance-trained subjects during hypocaloric periods.There is novel evidence that suggests higher protein intakes (>3.0 g/kg/d) may have positive effects on body composition in resistance-trained individuals (i.e., promote loss of fat mass).Recommendations regarding the optimal protein intake per serving for athletes to maximize MPS are mixed and are dependent upon age and recent resistance exercise stimuli. General recommendations are 0.25 g of a high-quality protein per kg of body weight, or an absolute dose of 20–40 g.Acute protein doses should strive to contain 700–3000 mg of leucine and/or a higher relative leucine content, in addition to a balanced array of the essential amino acids (EAAs).These protein doses should ideally be evenly distributed, every 3–4 h, across the day.The optimal time period during which to ingest protein is likely a matter of individual tolerance, since benefits are derived from pre- or post-workout ingestion; however, the anabolic effect of exercise is long-lasting (at least 24 h), but likely diminishes with increasing time post-exercise.While it is possible for physically active individuals to obtain their daily protein requirements through the consumption of whole foods, supplementation is a practical way of ensuring intake of adequate protein quality and quantity, while minimizing caloric intake, particularly for athletes who typically complete high volumes of training. Rapidly digested proteins that contain high proportions of essential amino acids (EAAs) and adequate leucine, are most effective in stimulating MPS. Different types and quality of protein can affect amino acid bioavailability following protein supplementation. Athletes should consider focusing on whole food sources of protein that contain all of the EAAs (i.e., it is the EAAs that are required to stimulate MPS). Endurance athletes should focus on achieving adequate carbohydrate intake to promote optimal performance; the addition of protein may help to offset muscle damage and promote recovery. Pre-sleep casein protein intake (30–40 g) provides increases in overnight MPS...
PURPOSE: Some studies report greater muscle hypertrophy during resistance exercise (RE) training from supplement-timing (i.e., the strategic consumption of protein and carbohydrate before and/or after each workout). However, no studies have examined whether this strategy provides greater muscle hypertrophy or strength development compared to supplementation at other times during the day. Therefore, the purpose of this study was to examine the effects of supplement-timing compared to supplementation in the hours not close to the workout on muscle fiber hypertrophy, strength and body composition during a 10 week RE program. METHODS:In a double-blind, randomized protocol, resistance-trained males were matched for strength and placed into one of two groups; PRE-POST consumed a supplement (1g/kg/body wt) containing protein/creatine/glucose immediately before and after RE. The MOR-EVE group consumed the same dose of the same supplement in the morning and late evening. All assessments were completed the week before and after 10 weeks of structured, supervised RE training.Assessments included strength (1RM, three exercises), body composition (DEXA) and vastus lateralis muscle biopsies for determination of muscle fiber type (I, IIa, IIx) cross-sectional area (CSA), contractile protein, creatine (Cr) and glycogen content. RESULTS: PRE-POST demonstrated a greater (P < 0.05) increase in lean body mass and 1RM strength in two of three assessments. The changes in body composition were supported by a greater (P < 0.05) increase in CSA of the type-II fibers and contractile protein content. PRE-POST supplementation also resulted in higher muscle Cr and glycogen values after the training program (P < 0.05).CONCLUSION: Supplement-timing represents a simple but effective strategy that enhances the adaptations that are desired from RE-training.
Position Statement: The following seven points related to the intake of protein for healthy, exercising individuals constitute the position stand of the Society. They have been approved by the Research Committee of the Society. 1) Vast research supports the contention that individuals engaged in regular exercise training require more dietary protein than sedentary individuals. 2) Protein intakes of 1.4 -2.0 g/kg/day for physically active individuals is not only safe, but may improve the training adaptations to exercise training. 3) When part of a balanced, nutrient-dense diet, protein intakes at this level are not detrimental to kidney function or bone metabolism in healthy, active persons. 4) While it is possible for physically active individuals to obtain their daily protein requirements through a varied, regular diet, supplemental protein in various forms are a practical way of ensuring adequate and quality protein intake for athletes. 5) Different types and quality of protein can affect amino acid bioavailability following protein supplementation. The superiority of one protein type over another in terms of optimizing recovery and/or training adaptations remains to be convincingly demonstrated. 6) Appropriately timed protein intake is an important component of an overall exercise training program, essential for proper recovery, immune function, and the growth and maintenance of lean body mass. 7) Under certain circumstances, specific amino acid supplements, such as branched-chain amino acids (BCAA's), may improve exercise performance and recovery from exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.