This article provides recommendations for the care of laboratory zebrafish ( Danio rerio) as part of the further implementation of Annex A to the European Convention on the protection of vertebrate animals used for experimental and other scientific purposes, EU Commission Recommendation 2007/526/EC and the fulfilment of Article 33 of EU Directive 2010/63, both concerning the housing and care of experimental animals. The recommendations provide guidance on best practices and ranges of husbandry parameters within which zebrafish welfare, as well as reproducibility of experimental procedures, are assured. Husbandry procedures found today in zebrafish facilities are numerous. While the vast majority of these practices are perfectly acceptable in terms of zebrafish physiology and welfare, the reproducibility of experimental results could be improved by further standardisation of husbandry procedures and exchange of husbandry information between laboratories. Standardisation protocols providing ranges of husbandry parameters are likely to be more successful and appropriate than the implementation of a set of fixed guidance values neglecting the empirically successful daily routines of many facilities and will better reflect the wide range of environmental parameters that characterise the natural habitats occupied by zebrafish. A joint working group on zebrafish housing and husbandry recommendations, with members of the European Society for Fish Models in Biology and Medicine (EUFishBioMed) and of the Federation of European Laboratory Animal Science Associations (FELASA) has been given a mandate to provide guidelines based on a FELASA list of parameters, ‘Terms of Reference’.
Few studies have yet addressed the functional aspects of MHC molecules in fish. To lay the foundation for this, we evaluated the association between disease resistance and MHC class I and class II polymorphism in Atlantic salmon. Standardized disease challenge trials were performed on a semi-wild Atlantic salmon population with subsequent MHC typing and statistical analysis. The pathogens employed were infectious salmon anaemia virus (ISAV) causing infectious salmon anaemia and the Aeromonas salmonicida bacteria causing furunculosis. The material consisted of 1,182 Atlantic salmon from 33 families challenged with A. salmonicida and 1,031 Atlantic salmon from 25 families challenged with ISAV. We found highly significant associations between resistance towards infectious diseases caused by both pathogens and MH class I and class II polymorphism in Atlantic salmon. The observed associations were detected due to independently segregating MH class I and class II single loci, and inclusion of a large number of fish allowing an extensive statistical analysis.
A semantic model for overall welfare assessment of Atlantic salmon reared in sea cages is presented. The model, called SWIM 1.0, is designed to enable fish farmers to make a formal and standardized assessment of fish welfare using a set of selected welfare indicators. In order to cover all welfare relevant aspects from the animals’ point of view and to create a science‐based tool we first identified the known welfare needs of Atlantic salmon in sea cages and searched the literature for feasible welfare indicators. The framework of semantic modelling was used to perform a structured literature review and an evaluation of each indicator. The selected indicators were water temperature, salinity, oxygen saturation, water current, stocking density, lighting, disturbance, daily mortality rate, appetite, sea lice infestation ratio, condition factor, emaciation state, vertebral deformation, maturation stage, smoltification state, fin condition and skin condition. Selection criteria for the indicators were that they should be practical and measureable on the farm, that each indicator could be divided into levels from good to poor welfare backed up by relevant scientific literature. To estimate each indicator’s relative impact on welfare, all the indicators were weighted based on their respective literature reviews and according to weighting factors defined as part of the semantic modelling framework. This was ultimately amalgamated into an overall model that calculates welfare indexes for salmon in sea cages. More importantly, the model identifies how each indicator contributes (negatively and positively) to the overall index and hence which welfare needs are compromised or fulfilled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.