This study describes behavioral changes of wild cetaceans observed during controlled exposures of naval sonar. In 2006 through 2009, 14 experiments were conducted with killer (n = 4), longfinned pilot (n = 6), and sperm (n = 4) whales. A total of 14 6-7 kHz upsweep, 13 1-2 kHz upsweep, and five 1-2 kHz downsweep sonar exposures, as well as seven Silent vessel control exposure sessions and eight playbacks of killer whale sounds were conducted. Sonar signals were transmitted by a towable source that approached each tagged subject from a starting distance of 6 to 8 km with a ramp up of source levels (from 152 to 158 to a maximum of 198 to 214 dB re: 1 µPa m). This procedure resulted in a gradual escalation of the sonar received level at the whale, measured by towed hydrophones and by tags that record movement and sound (Dtags). Observers tracked the position of each tagged animal and recorded group-level surface behavior. Two expert panels independently scored the severity of diverse behavioral changes observed during each sonar and control exposure, using the 0 to 9 point severity scale of Southall et al. (2007), and then reached consensus with a third-party moderator. The most severe responses scored (i.e., most likely to affect vital rates) included a temporary separation of a calf from its group, cessation of feeding or resting, and avoidance movements that continued after the sonar stopped transmitting. Higher severity scores were more common during sonar exposure than during Silent control sessions. Scored responses started at lower sound pressure levels (SPLs) for killer whales and were more severe during sonar exposures to killer and sperm whales than to longfinned pilot whales. Exposure sessions with the higher source level of 1 to 2 kHz sonar had more changes and a trend for higher maximum severity than 6 to 7 kHz sessions, but the order of the sessions had no effect. This approach is helpful to standardize the description of behavioral changes that occurred during our experiments and to identify and describe the severity of potential responses of free-ranging cetaceans to sonar.
The underwater hearing sensitivity of a young male harbor porpoise for tonal signals of various signal durations was quantified by using a behavioral psychophysical technique. The animal was trained to respond only when it detected an acoustic signal. Fifty percent detection thresholds were obtained for tonal signals (15 frequencies between 0.25-160 kHz, durations 0.5-5000 ms depending on the frequency; 134 frequency-duration combinations in total). Detection thresholds were quantified by varying signal amplitude by the 1-up 1-down staircase method. The hearing thresholds increased when the signal duration fell below the time constant of integration. The time constants, derived from an exponential model of integration [Plomp and Bouman, J. Acoust. Soc. Am. 31, 749-758 (1959)], varied from 629 ms at 2 kHz to 39 ms at 64 kHz. The integration times of the porpoises were similar to those of other mammals including humans, even though the porpoise is a marine mammal and a hearing specialist. The results enable more accurate estimations of the distances at which porpoises can detect short-duration environmental tonal signals. The audiogram thresholds presented by Kastelein et al. [J. Acoust. Soc. Am. 112, 334-344 (2002)], after correction for the frequency bandwidth of the FM signals, are similar to the results of the present study for signals of 1500 ms duration. Harbor porpoise hearing is more sensitive between 2 and 10 kHz, and less sensitive above 10 kHz, than formerly believed.
Eight experimentally controlled exposures to 1À2 kHz or 6À7 kHz sonar signals were conducted with four killer whale groups. The source level and proximity of the source were increased during each exposure in order to reveal response thresholds. Detailed inspection of movements during each exposure session revealed sustained changes in speed and travel direction judged to be avoidance responses during six of eight sessions. Following methods developed for Phase-I clinical trials in human medicine, response thresholds ranging from 94 to 164 dB re 1 lPa received sound pressure level (SPL) were fitted to Bayesian dose-response functions. Thresholds did not consistently differ by sonar frequency or whether a group had previously been exposed, with a mean SPL response threshold of 142 6 15 dB (mean 6 s.d.). High levels of between-and within-individual variability were identified, indicating that thresholds depended upon other undefined contextual variables. The dose-response functions indicate that some killer whales started to avoid sonar at received SPL below thresholds assumed by the U.S. Navy. The predicted extent of habitat over which avoidance reactions occur depends upon whether whales responded to proximity or received SPL of the sonar or both, but was large enough to raise concerns about biological consequences to the whales.
Although northern bottlenose whales were the most heavily hunted beaked whale, we have little information about this species in its remote habitat of the North Atlantic Ocean. Underwater anthropogenic noise and disruption of their natural habitat may be major threats, given the sensitivity of other beaked whales to such noise disturbance. We attached dataloggers to 13 northern bottlenose whales and compared their natural sounds and movements to those of one individual exposed to escalating levels of 1–2 kHz upsweep naval sonar signals. At a received sound pressure level (SPL) of 98 dB re 1 μPa, the whale turned to approach the sound source, but at a received SPL of 107 dB re 1 μPa, the whale began moving in an unusually straight course and then made a near 180° turn away from the source, and performed the longest and deepest dive (94 min, 2339 m) recorded for this species. Animal movement parameters differed significantly from baseline for more than 7 h until the tag fell off 33–36 km away. No clicks were emitted during the response period, indicating cessation of normal echolocation-based foraging. A sharp decline in both acoustic and visual detections of conspecifics after exposure suggests other whales in the area responded similarly. Though more data are needed, our results indicate high sensitivity of this species to acoustic disturbance, with consequent risk from marine industrialization and naval activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.