Using a low coherence interferometry (LCI) model, a comparison of broadband single-Gaussian and multi-Gaussian light sources has been undertaken. For single-Gaussian sources, the axial resolution improves with the source bandwidth, confirming the coherence length relation that the resolution for single Gaussian sources improves with increasing spectral bandwidth. However, narrow bandwidth light sources result in interferograms with overlapping strata peaks and the loss of individual strata information. For multiple-Gaussian sources with the same bandwidth, spectral side lobes increase, reducing A-scan reliability to show accurate layer information without eliminating the side lobes. The simulations show the conditions needed for the resolution of strata information for broadband light sources using both single and multiple Gaussian models. The potential to use the model to study optical coherence tomography (OCT) light sources including super luminescent diodes (SLDs), as reviewed in this paper, as well as optical delay lines and sample structures could better characterize these LCI and OCT elements. Forecasting misinformation in the interferogram may allow preliminary corrections. With improvement to the LCI-OCT model, more applications are envisaged.
Traditional Fibre Bragg Grating (FBG) sensing systems acquire data about the measurand via the spectral response of the FBG. Edge filter methods are also used in the acquisition of data from FBGs. In edge filter systems, the spectral shift in the FBG due to the measurand is converted into an optical power change. This optical power change can then be easily measured using conventional optoelectronic devices. We demonstrate the use of a Transmit Reflect Detection System (TRDS) for Fibre Bragg Grating (FBG) sensors. The TRDS is in essence a dual edge filter detection method. In conventional edge filter detection schemes, the reflected portion of the incident spectrum is monitored to determine the change in the measurand. In the TRDS, both the transmitted and reflected portions of the input spectrum, from a narrow band light source, are utilised. The optical power of the transmitted and reflected signals are measured via two separate photoreceivers, where each generates a single edge filter signal. As the spectral response of the FBG shifts due to the measurand, the transmitted power will increase, and the reflected power will decrease, or vice versa. By differentially amplifying the transmitted and reflected components, the overall signal is increased. This results in improved sensitivity and efficiency of the photonic sensor. In this work, the FBG sensor and TRDS are used in the measuring and monitoring of temperature, force and strain. As such, results are presented for the FBG TRDS for all of the measurands.
Abstract-The effect of the width of inter-pixel double boundary trench isolation on the response resolution of a two dimensional CMOS compatible stacked gradient homojunction photodiode array was simulated. Insulation and P-doped double boundary trench isolation were compared. Both geometries showed improved crosstalk suppression and enhanced sensitivity compared to photodiode geometries previously investigated, combined with a reduction in fabrication complexity for the insulation DBTI configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.