OBJECTIVETo investigate whether type 1 diabetes affects white matter (WM) structure in a large sample of young children.RESEARCH DESIGN AND METHODSChildren (ages 4 to <10 years) with type 1 diabetes (n = 127) and age-matched nondiabetic control subjects (n = 67) had diffusion weighted magnetic resonance imaging scans in this multisite neuroimaging study. Participants with type 1 diabetes were assessed for HbA1c history and lifetime adverse events, and glucose levels were monitored using a continuous glucose monitor (CGM) device and standardized measures of cognition.RESULTSBetween-group analysis showed that children with type 1 diabetes had significantly reduced axial diffusivity (AD) in widespread brain regions compared with control subjects. Within the type 1 diabetes group, earlier onset of diabetes was associated with increased radial diffusivity (RD) and longer duration was associated with reduced AD, reduced RD, and increased fractional anisotropy (FA). In addition, HbA1c values were significantly negatively associated with FA values and were positively associated with RD values in widespread brain regions. Significant associations of AD, RD, and FA were found for CGM measures of hyperglycemia and glucose variability but not for hypoglycemia. Finally, we observed a significant association between WM structure and cognitive ability in children with type 1 diabetes but not in control subjects.CONCLUSIONSThese results suggest vulnerability of the developing brain in young children to effects of type 1 diabetes associated with chronic hyperglycemia and glucose variability.
The ability to decode letters into language sounds is essential for reading success, and accurate identification of children at high risk for decoding impairment is critical for reducing the frequency and severity of reading impairment. We examined the utility of behavioral (standardized tests), and functional and structural neuroimaging measures taken with children at the beginning of a school year for predicting their decoding ability at the end of that school year. Specific patterns of brain activation during phonological processing and morphology, as revealed by voxel-based morphometry (VBM) of gray and white matter densities, predicted later decoding ability. Further, a model combining behavioral and neuroimaging measures predicted decoding outcome significantly better than either behavioral or neuroimaging models alone. Results were validated using cross-validation methods. These findings suggest that neuroimaging methods may be useful in enhancing the early identification of children at risk for poor decoding and reading skills.
Significant regional differences in gray and white matter volume and subtle cognitive differences between young diabetic and nondiabetic children have been observed. Here, we assessed whether these differences change over time and the relation with dysglycemia. Children ages 4 to <10 years with (n = 144) and without (n = 72) type 1 diabetes (T1D) had high-resolution structural MRI and comprehensive neurocognitive tests at baseline and 18 months and continuous glucose monitoring and HbA1c performed quarterly for 18 months. There were no differences in cognitive and executive function scores between groups at 18 months. However, children with diabetes had slower total gray and white matter growth than control subjects. Gray matter regions (left precuneus, right temporal, frontal, and parietal lobes and right medial-frontal cortex) showed lesser growth in diabetes, as did white matter areas (splenium of the corpus callosum, bilateral superior-parietal lobe, bilateral anterior forceps, and inferior-frontal fasciculus). These changes were associated with higher cumulative hyperglycemia and glucose variability but not with hypoglycemia. Young children with T1D have significant differences in total and regional gray and white matter growth in brain regions involved in complex sensorimotor processing and cognition compared with age-matched control subjects over 18 months, suggesting that chronic hyperglycemia may be detrimental to the developing brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.