Nanoelectromechanical systems were fabricated from single- and multilayer graphene sheets by mechanically exfoliating thin sheets from graphite over trenches in silicon oxide. Vibrations with fundamental resonant frequencies in the megahertz range are actuated either optically or electrically and detected optically by interferometry. We demonstrate room-temperature charge sensitivities down to 8 x 10(-4) electrons per root hertz. The thinnest resonator consists of a single suspended layer of atoms and represents the ultimate limit of two-dimensional nanoelectromechanical systems.
We demonstrate that a monolayer graphene membrane is impermeable to standard gases including helium. By applying a pressure difference across the membrane, we measure both the elastic constants and the mass of a single layer of graphene. This pressurized graphene membrane is the world's thinnest balloon and provides a unique separation barrier between 2 distinct regions that is only one atom thick.Membranes are fundamental components of a wide variety of physical, chemical, and biological systems, used in everything from cellular compartmentalization to mechanical pressure sensing. They divide space into two regions, each capable of possessing different physical or chemical properties. A simple example is the stretched surface of a balloon, where a pressure difference across the balloon is balanced by the surface tension in the membrane. Graphene, a single layer of graphite, is the ultimate limit: a chemically stable and electrically conducting membrane one atom in thickness. 1-3 An interesting question is whether such an atomic membrane can be impermeable to atoms, molecules and ions. In this letter, we address this question for gases. We show that these membranes are impermeable and can support pressure differences larger than one atmosphere. We use such pressure differences to tune the mechanical resonance frequency by ∼100 MHz. This allows us to measure the mass and elastic constants of graphene membranes. We demonstrate that atomic layers of graphene have stiffness similar to bulk graphite (E ∼ 1 TPa). These results show that single atomic sheets can be integrated with microfabricated structures to create a new class of atomic scale membrane-based devices.A schematic of the device geometry used heresa graphene-sealed microchambersis shown in Figure 1a. Graphene sheets are suspended over predefined wells in silicon oxide using mechanical exfoliation (see Supporting Information). Each graphene membrane is clamped on all sides by the van der Waals force between the graphene and SiO 2 , creating a ∼(µm) 3 volume of confined gas. The inset of Figure 1a shows an optical image of a single layer graphene sheet forming a sealed square drumhead with a width W ) 4.75 µm on each side. Raman spectroscopy was used to confirm that this graphene sheet was a single layer in thickness. [4][5][6] Chambers with graphene thickness from 1 to ∼75 layers were studied.After initial fabrication, the pressure inside the microchamber, p int , is atmospheric pressure (101 kPa). If the pressure external to the chamber, p ext , is changed, we found that p int will equilibrate to p ext on a time scale that ranges from minutes to days, depending on the gas species and the temperature. On shorter time scales than this equilibration time, a significant pressure difference ∆p ) p int -p ext can exist across the membrane, causing it to stretch like the surface of a balloon (Figure 1b). Examples are shown for ∆p > 0 in Figure 1c and ∆p < 0 in Figure 1d.To create a positive pressure difference, ∆p > 0, as shown in Figure 1c, we place a s...
The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.
The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device. The observed thermal conductivity is more than 3000 W/K m at room temperature, which is two orders of magnitude higher than the estimation from previous experiments that used macroscopic mat samples. The temperature dependence of the thermal conductivity of nanotubes exhibits a peak at 320 K due to the onset of Umklapp phonon scattering. The measured thermoelectric power shows linear temperature dependence with a value of 80 µV/K at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.