We present the complete genome sequence of Yersinia pestis KIM, the etiologic agent of bubonic and pneumonic plague. The strain KIM, biovar Mediaevalis, is associated with the second pandemic, including the Black Death. The 4.6-Mb genome encodes 4,198 open reading frames (ORFs). The origin, terminus, and most genes encoding DNA replication proteins are similar to those of Escherichia coli K-12. The KIM genome sequence was compared with that of Y. pestis CO92, biovar Orientalis, revealing homologous sequences but a remarkable amount of genome rearrangement for strains so closely related. The differences appear to result from multiple inversions of genome segments at insertion sequences, in a manner consistent with present knowledge of replication and recombination. There are few differences attributable to horizontal transfer. The KIM and E. coli K-12 genome proteins were also compared, exposing surprising amounts of locally colinear "backbone," or synteny, that is not discernible at the nucleotide level. Nearly 54% of KIM ORFs are significantly similar to K-12 proteins, with conserved housekeeping functions. However, a number of E. coli pathways and transport systems and at least one global regulator were not found, reflecting differences in lifestyle between them. In KIM-specific islands, new genes encode candidate pathogenicity proteins, including iron transport systems, putative adhesins, toxins, and fimbriae.
Mosquito-borne diseases, including dengue, malaria, and lymphatic filariasis, exact a devastating toll on global health and economics, killing or debilitating millions every year (54). Mosquito innate immune responses are at the forefront of concerted research efforts aimed at defining potential target genes that could be manipulated to engineer pathogen resistance in vector populations. We aimed to describe the pivotal role that circulating blood cells (
ASAP (a systematic annotation package for community analysis of genomes) is a relational database and web interface developed to store, update and distribute genome sequence data and functional characterization (https://asap.ahabs.wisc.edu/annotation/php/ASAP1.htm). ASAP facilitates ongoing community annotation of genomes and tracking of information as genome projects move from preliminary data collection through post-sequencing functional analysis. The ASAP database includes multiple genome sequences at various stages of analysis, corresponding experimental data and access to collections of related genome resources. ASAP supports three levels of users: public viewers, annotators and curators. Public viewers can currently browse updated annotation information for Escherichia coli K-12 strain MG1655, genome-wide transcript profiles from more than 50 microarray experiments and an extensive collection of mutant strains and associated phenotypic data. Annotators worldwide are currently using ASAP to participate in a community annotation project for the Erwinia chrysanthemi strain 3937 genome. Curation of the E. chrysanthemi genome annotation as well as those of additional published enterobacterial genomes is underway and will be publicly accessible in the near future.
BackgroundDickeya dadantii and Pectobacterium atrosepticum are phytopathogenic enterobacteria capable of facultative anaerobic growth in a wide range of O2 concentrations found in plant and natural environments. The transcriptional response to O2 remains under-explored for these and other phytopathogenic enterobacteria although it has been well characterized for animal-associated genera including Escherichia coli and Salmonella enterica. Knowledge of the extent of conservation of the transcriptional response across orthologous genes in more distantly related species is useful to identify rates and patterns of regulon evolution. Evolutionary events such as loss and acquisition of genes by lateral transfer events along each evolutionary branch results in lineage-specific genes, some of which may have been subsequently incorporated into the O2-responsive stimulon. Here we present a comparison of transcriptional profiles measured using densely tiled oligonucleotide arrays for two phytopathogens, Dickeya dadantii 3937 and Pectobacterium atrosepticum SCRI1043, grown to mid-log phase in MOPS minimal medium (0.1% glucose) with and without O2.ResultsMore than 7% of the genes of each phytopathogen are differentially expressed with greater than 3-fold changes under anaerobic conditions. In addition to anaerobic metabolism genes, the O2 responsive stimulon includes a variety of virulence and pathogenicity-genes. Few of these genes overlap with orthologous genes in the anaerobic stimulon of E. coli. We define these as the conserved core, in which the transcriptional pattern as well as genetic architecture are well preserved. This conserved core includes previously described anaerobic metabolic pathways such as fermentation. Other components of the anaerobic stimulon show variation in genetic content, genome architecture and regulation. Notably formate metabolism, nitrate/nitrite metabolism, and fermentative butanediol production, differ between E. coli and the phytopathogens. Surprisingly, the overlap of the anaerobic stimulon between the phytopathogens is also relatively small considering that they are closely related, occupy similar niches and employ similar strategies to cause disease. There are cases of interesting divergences in the pattern of transcription of genes between Dickeya and Pectobacterium for virulence-associated subsystems including the type VI secretion system (T6SS), suggesting that fine-tuning of the stimulon impacts interaction with plants or competing microbes.ConclusionsThe small number of genes (an even smaller number if we consider operons) comprising the conserved core transcriptional response to O2 limitation demonstrates the extent of regulatory divergence prevalent in the Enterobacteriaceae. Our orthology-driven comparative transcriptomics approach indicates that the adaptive response in the eneterobacteria is a result of interaction of core (regulators) and lineage-specific (structural and regulatory) genes. Our subsystems based approach reveals that similar phenotypic outcomes are sometimes ach...
ASAP is a comprehensive web-based system for community genome annotation and analysis. ASAP is being used for a large-scale effort to augment and curate annotations for genomes of enterobacterial pathogens and for additional genome sequences. New tools, such as the genome alignment program Mauve, have been incorporated into ASAP in order to improve display and analysis of related genomes. Recent improvements to the database and challenges for future development of the system are discussed. ASAP is available on the web at .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.