Although web page and computer interface developers generally have little experience in generating effective colour schemes, colour selection appears rarely in user interface design literature, and there are few tools available to assist in appropriate choice of colours. This article describes an algorithmic technique for applying colour harmony rules to the selection of colour schemes for computer interfaces and web pages. Our software implementation of this approachwhich we term the Colour Harmoniser-adapts and extends classical colour harmony rules for graphical user interfaces, combining algorithmic techniques and personal taste. A companion article presents the experimental evaluation of the system presented here. Our technique applies a set of rules for colour harmony to specific features of the interface or web page to create abstract colour schemes; the user then modifies the overall colour cast, saturation, and light-dark distribution, producing colourings that are both harmonious and usable. We demonstrate experimentally that the software is relatively simple to use and produces colourings that are well-received by humans. In this article, we define a fitness function that numerically evaluates the colour harmony of a user interface and underpins a genetic algorithm for creating harmonious schemes. We show how abstract, hue-independent, colour schemes may be mapped to real colour schemes, leaving the abstract colour harmony unchanged, but accommodating the developer's personal preferences for overall colouring, light-dark contrast, and saturation. This abstract/concrete separation automates the creation of harmonious schemes and allows unskilled developers to express their aesthetic preferences using simple direct manipulation controls.
While people have many ideas about how a smart home should react to particular behaviours from their inhabitant, there seems to have been relatively little attempt to organise this systematically. In this paper, we attempt to rectify this in consideration of context awareness and novelty detection for a smart home that monitors its inhabitant for illness and unexpected behaviour. We do this through the concept of the Use Case, which is used in software engineering to specify the behaviour of a system. We describe a set of scenarios and the possible outputs that the smart home could give and introduce the SHMUC Repository of Smart Home Use Cases. Based on this, we can consider how probabilistic and logic-based reasoning systems would produce different capabilities.
Although webpage and computer interface designers generally have little experience at generating effective colour schemes, colour selection appears only rarely in user interface design literature. This article describes the experimental evaluation of an algorithmic technique that applies colour harmony rules to the selection of colour schemes for computer interfaces and web pages. The technique uses a genetic algorithm to evolve colour schemes; the evolutionary path is determined by a quantitative colour harmony evaluation function.Our technique first creates abstract colour schemes by applying those rules to specific features of the interface or web page; the user then holistically modifies the scheme's overall colour cast, overall saturation, and light-dark distribution, producing colourings that are both harmonious and usable. We demonstrate experimentally that the software is relatively simple to use and produces colourings that are well-received by humans.In an earlier article, the criteria for a colour harmony tool for computer interfaces and websites were described and used in the design of the Colour Harmoniser, our software implementation of a system that is based on classical rules of colour harmony, adapted and extended to suit graphical user interfaces.In this article, we describe two sets of experiments that have demonstrated the usability and effectiveness of the Colour Harmoniser tool, compared with standard methods of colour selection. These experiments suggest that the tool functions somewhat more effectively than we originally anticipated, producing colour schemes that were rated more highly on several quality scales than those produced by random choice, by humans who self-classify as nonartists, and by humans who self-classify as artists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.