We report on the generation of mid-infrared Kerr frequency combs in high-finesse CaF2 and MgF2 whispering-gallery-mode resonators pumped with continuous-wave room-temperature quantum cascade lasers. The combs were centered at 4.5 μm, the longest wavelength to date. A frequency comb wider than one half of an octave was demonstrated when approximately 20 mW of pump power was coupled to an MgF2 resonator characterized with quality factor exceeding 10(8).
The cw and Q-switched performance of Er:YAG lasers operating at 1645 nm were measured. Guided by previous work in the literature, we sought to improve efficiency at low pulse repetition frequencies by decreasing the doping level from 0.5 to 0.25 at.% to reduce upconversion losses. Only a small improvement was obtained with this first-time-tested lower-doped material. Measurements of the fluorescence due to upconversion directly indicated that loss due to this process could not account for the observed power loss at low pulse repetition frequencies. Enhanced green emission during Q-switched operation, resulting from two-photon absorption of 1645 nm intracavity laser light, is reported for what we believe to be the first time. Measurements indicated that the output loss from this process is negligible.
We obtained >1 W average power and up to 5 μJ pulse energy at ∼3520 nm wavelength via difference-frequency generation (DFG) of an all-fiber, few-ns pulse, variable pulse-repetition-frequency laser source operating at 1064 nm and 10 mW, continuous-wave, 1525 nm single-frequency diode laser, within a 5 cm-long periodically poled lithium niobate (PPLN) crystal. To the best of our knowledge, this result amounts to the highest-average-power, spectrally bright mid-infrared radiation obtained via DFG.
We report 1645 nm narrowband operation of a monolithic Er:YAG nonplanar ring oscillator resonantly pumped at 1532 nm. Unidirectional cw power up to 0.5 W was obtained with a measured linewidth of 21 kHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.