To define the role of SV40 large T antigen in the transformation and immortalization of human cells, we have constructed a plasmid lacking most of the unique coding sequences of small t antigen as well as the SV40 origin of replication. The promoter for T antigen, which lies within the origin of replication, was deleted and replaced by the Rous sarcoma virus promoter. This minimal construct was co-electroporated into normal human fibroblasts of neonatal origin along with a plasmid containing the neomycin resistance gene (neo). Three G418-resistant, T antigen-positive clones were expanded and compared to three T antigen-positive clones that received the pSV3neo plasmid (capable of expressing large and small T proteins and having two origins of replication). Autonomous replication of plasmid DNA was observed in all three clones that received pSV3neo but not in any of the three origin minus clones. Immediately after clonal expansion, several parameters of neoplastic transformation were assayed. Low percentages of cells in T antigen-positive populations were anchorage independent or capable of forming colonies in 1% fetal bovine serum. The T antigen-positive clones generally exhibited an extended lifespan in culture but rarely became immortalized. Large numbers of dead cells were continually generated in all T antigen-positive, pre-crisis populations. Ninety-nine percent of all T antigen-positive cells had numerical or structural chromosome aberrations. Control cells that received the neo gene did not have an extended life span, did not have noticeable numbers of dead cells, and did not exhibit karyotype instability. We suggest that the role of T antigen protein in the transformation process is to generate genetic hypervariability, leading to various consequences including neoplastic transformation and cell death.
This work was performed under the auspices of the U. S. Atomic Energy Commission.forms also differed slightly in apparent molecular size and charge.All four forms of cellular heparan sulfate were identified by cellulose acetate electrophoresis, by depolymerization by direct nitrous acid treatment, and by comparisons with authentic bovine heparan sulfate. The isolated forms differed
Normal cells show a limited lifespan in culture and the phenotype of cellular senescence. Tumors and tumor cell lines have typically overcome this form of growth suppression and grow continuously as immortal cell lines in culture. We have exploited the DNA virus SV40 to study the mechanism by which human ®broblasts overcome senescence and become immortal. Multiple steps have now been identi®ed, including inactivation of cellular growth suppressors through direct interaction with SV40 large T antigen and through mutation of a gene on chromosome 6 (designated SEN6). In this study, we sublocalize the site of SEN6 to 6q26-27 based on molecular genetic analysis. Twelve SV40-immortalized ®broblast cell lines share a deletion in this area based on assessment for loss of heterozygostiy (LOH) for seven informative markers on 6q. Two immortal cell lines (AR5 and HALneo) appeared to have retained separate single copies of chromosome 6 despite the fact that they are both derived from the same preimmortal SV40-transformant and should share the same mutated allele of SEN6 (Hubbard-Smith et al., 1992). Detailed analysis by polymerase chain reaction, restriction fragment length polymorphism and¯uorescence in situ hybridization shows, however, that although they di er for 17 markers from the centromere to 6q26, they share AR5 derived sequences (eight markers) distal to 6q26 including the minimal deletion region, further supporting the assignment of SEN6 to this region. Since human tumors including non-Hodgkins lymphoma, mammary carcinoma and ovarian carcinoma show LOH in 6q26-27, inactivation of SEN6 may be responsible for immortalization of these tumors as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.