Demands for quick and accurate life cycle assessments create a need for methods to rapidly generate reliable life cycle inventories (LCI). Data mining is a suitable tool for this purpose, especially given the large amount of available governmental data. These data are typically applied to LCIs on a case-by-case basis. As linked open data becomes more prevalent, it may be possible to automate LCI using data mining by establishing a reproducible approach for identifying, extracting, and processing the data. This work proposes a method for standardizing and eventually automating the discovery and use of publicly available data at the United States Environmental Protection Agency for chemical-manufacturing LCI. The method is developed using a case study of acetic acid. The data quality and gap analyses for the generated inventory found that the selected data sources can provide information with equal or better reliability and representativeness on air, water, hazardous waste, on-site energy usage, and production volumes but with key data gaps including material inputs, water usage, purchased electricity, and transportation requirements. A comparison of the generated LCI with existing data revealed that the data mining inventory is in reasonable agreement with existing data and may provide a more-comprehensive inventory of air emissions and water discharges. The case study highlighted challenges for current data management practices that must be overcome to successfully automate the method using semantic technology. Benefits of the method are that the openly available data can be compiled in a standardized and transparent approach that supports potential automation with flexibility to incorporate new data sources as needed.
A methodology is described for developing a gate-to-gate life cycle inventory (LCI) of a chemical manufacturing process to support the application of life cycle assessment in the design and regulation of sustainable chemicals. The inventories were derived by first applying process design and simulation to develop a process flow diagram describing the energy and basic material flows of the system. Additional techniques developed by the United States Environmental Protection Agency for estimating uncontrolled emissions from chemical processing equipment were then applied to obtain a detailed emission profile for the process. Finally, land use for the process was estimated using a simple sizing model. The methodology was applied to a case study of acetic acid production based on the Cativa process. The results reveal improvements in the qualitative LCI for acetic acid production compared to commonly used databases and top-down methodologies. The modeling techniques improve the quantitative LCI results for inputs and uncontrolled emissions. With provisions for applying appropriate emission controls, the proposed method can provide an estimate of the LCI that can be used for subsequent life cycle assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.