We have developed a data-driven, algorithmic method for identifying patients in an outpatient buprenorphine program at high risk for relapse in the following seven days. This method uses data already available in clinical laboratory data, can be made available in a timely matter, and is easily understandable and actionable by clinicians. Use of this method could significantly reduce the rate of relapse in addiction treatment programs by targeting interventions at those patients most at risk for near term relapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.