A critical decision-step in the emergency treatment of ischemic stroke is whether or not to administer thrombolysis — a treatment that can result in good recovery, or deterioration due to symptomatic intracranial haemorrhage (SICH). Certain imaging features based upon early computerized tomography (CT), in combination with clinical variables, have been found to predict SICH, albeit with modest accuracy. In this proof-of-concept study, we determine whether machine learning of CT images can predict which patients receiving tPA will develop SICH as opposed to showing clinical improvement with no haemorrhage. Clinical records and CT brains of 116 acute ischemic stroke patients treated with intravenous thrombolysis were collected retrospectively (including 16 who developed SICH). The sample was split into training (n = 106) and test sets (n = 10), repeatedly for 1760 different combinations. CT brain images acted as inputs into a support vector machine (SVM), along with clinical severity. Performance of the SVM was compared with established prognostication tools (SEDAN and HAT scores; original, or after adaptation to our cohort). Predictive performance, assessed as area under receiver-operating-characteristic curve (AUC), of the SVM (0.744) compared favourably with that of prognostic scores (original and adapted versions: 0.626–0.720; p < 0.01). The SVM also identified 9 out of 16 SICHs, as opposed to 1–5 using prognostic scores, assuming a 10% SICH frequency (p < 0.001). In summary, machine learning methods applied to acute stroke CT images offer automation, and potentially improved performance, for prediction of SICH following thrombolysis. Larger-scale cohorts, and incorporation of advanced imaging, should be tested with such methods.
SignificanceSimple voluntary movements (e.g., reaching or gripping) deteriorate with distraction, suggesting that the attention-control system—which suppresses distraction—influences motor control. Here, we tested the causal dependency of simple movements on attention control, and its neuroanatomical basis, in healthy elderly and patients with focal brain lesions. Not only did we find that attention control correlates with motor performance, correcting for lesion size, fatigue, etc., but we found a revealing pattern of dissociations: Severe motor impairment could occur with normal attention control whereas impaired attention control never occurred with disproportionately milder motor impairment—suggesting that attention control is required for normal motor performance. One implication is that a component of stroke paralysis arises from poor attentional control, which could itself be a therapeutic target.
More than half of all stroke patients can be expected to have a lesion location classifiable into 1 of the 3 principal attention networks. Our results have potential implications for therapy personalization in focal brain diseases including stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.