We discuss some difficulties in determining valid upper bounds in spatial branch-and-bound methods for global minimization in the presence of nonconvex constraints. In fact, two examples illustrate that standard techniques for the construction of upper bounds may fail in this setting. Instead, we propose to perturb infeasible iterates along Mangasarian-Fromovitz directions to feasible points whose objective function values serve as upper bounds. These directions may be calculated by the solution of a single linear optimization problem per iteration. Preliminary numerical results indicate that our enhanced algorithm solves optimization problems where a standard branch-and-bound method does not converge to the correct optimal value.
We present and discuss a method to relax sets described by finitely many smooth convex inequality constraints by the level set of a single smooth convex inequality constraint. Based on error bounds and Lipschitz continuity, special attention is paid to the maximal approximation error and a guaranteed safety margin. Our results allow to safely avoid the obstacle by obeying a single smooth constraint. Numerical results indicate that our technique gives rise to a smoothing method which performs well even for smoothing parameters very close to zero.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.