Translocations are being increasingly proposed as a way of conserving biodiversity, particularly in the management of threatened and keystone species, with the aims of maintaining biodiversity and ecosystem function under the combined pressures of habitat fragmentation and climate change. Evolutionary genetic considerations should be an important part of translocation strategies, but there is often confusion about concepts and goals. Here, we provide a classification of translocations based on specific genetic goals for both threatened species and ecological restoration, separating targets based on ‘genetic rescue’ of current population fitness from those focused on maintaining adaptive potential. We then provide a framework for assessing the genetic benefits and risks associated with translocations and provide guidelines for managers focused on conserving biodiversity and evolutionary processes. Case studies are developed to illustrate the framework.
Polymerase chain reaction (PCR) products corresponding to 803 bp of the cytochrome oxidase subunits I and II region of mitochondrial DNA (mtDNA COI-II) were deduced to consist of multiple haplotypes in three Sitobion species. We investigated the molecular basis of these observations. PCR products were cloned, and six clones from one individual per species were sequenced. In each individual, one sequence was found commonly, but also two or three divergent sequences were seen. The divergent sequences were shown to be nonmitochondrial by sequencing from purified mtDNA and Southern blotting experiments. All seven nonmitochondrial clones sequenced to completion were unique. Nonmitochondrial sequences have a high proportion of unique sites, and very few characters are shared between nonmitochondrial clones to the exclusion of mtDNA. From these data, we infer that fragments of mtDNA have been transposed separately (probably into aphid chromosomes), at a frequency only known to be equalled in humans. The transposition phenomenon appears to occur infrequently or not at all in closely related genera and other aphids investigated. Patterns of nucleotide substitution in mtDNA inferred over a parsimony tree are very different from those in transposed sequences. Compared with mtDNA, nonmitochondrial sequences have less codon position bias, more even exchanges between A, G, C and T, and a higher proportion of nonsynonymous replacements. Although these data are consistent with the transposed sequences being under less constraint than mtDNA, changes in the nonmitochondrial sequences are not random: there remains significant position bias, and probable excesses of synonymous replacements and of conservative inferred amino acid replacements. We conclude that a proportion of the inferred change in the nonmitochondrial sequences occurred before transposition. We believe that Sitobion aphids (and other species exhibiting mtDNA transposition) may be important for studying the molecular evolution of mtDNA and pseudogenes. However, our data highlight the need to establish the true evolutionary relationships between sequences in comparative investigations.
The biological diversity of the planet is being rapidly depleted due to the direct and indirect consequences of human activity. As the size of animal and plant populations decrease and fragmentation increases, loss of genetic diversity reduces their ability to adapt to changes in the environment, with inbreeding and reduced fitness inevitable consequences for many species. Many small isolated populations are going extinct unnecessarily. In many cases, such populations can be genetically rescued by gene flow into them from another population within the species, but this is very rarely done. This novel and authoritative book addresses the issues involved in genetic management of fragmented animal and plant populations, including inbreeding depression, loss of genetic diversity and elevated extinction risk in small isolated populations, augmentation of gene flow, genetic rescue, causes of outbreeding depression and predicting its occurrence, desirability and implementation of genetic translocations to cope with climate change, and defining and diagnosing species for conservation purposes.
Aim The mesic biome, encompassing both rain forest and open sclerophyllous forests, is central to understanding the evolution of Australia's terrestrial biota and has long been considered the ancestral biome of the continent. Our aims are to review and refine key hypotheses derived from palaeoclimatic data and the fossil record that are critical to understanding the evolution of the Australian mesic biota. We examine predictions arising from these hypotheses using available molecular phylogenetic and phylogeographical data. In doing so, we increase understanding of the mesic biota and highlight data deficiencies and fruitful areas for future research.Location The mesic biome of Australia, along the eastern coast of Australia, and in the south-east and south-west, including its rain forest and sclerophyllous, often eucalypt-dominated, habitats.Methods We derived five hypotheses based on palaeoclimatic and fossil data regarding the evolution of the Australian mesic biota, particularly as it relates to the mesic biome. We evaluated predictions formulated from these hypotheses using suitable molecular phylogenies of terrestrial plants and animals and freshwater invertebrates.Results There was support for the ancestral position of mesic habitat in most clades, with support for rain forest habitat ancestry in some groups, while evidence of ancestry in mesic sclerophyllous habitats was also demonstrated for some plants and herpetofauna. Contraction of mesic habitats has led to extinction of numerous lineages in many clades and this is particularly evident in the rain forest component. Species richness was generally higher in sclerophyllous clades than in rain forest clades, probably due to higher rates of net speciation in the former and extinction in the latter. Although extinction has been prominent in rain forest communities, tropical rain forests appear to have experienced extensive immigration from northern neighbours. Pleistocene climatic oscillations have left genetic signatures at multiple levels of divergence and with complex geographical structuring, even in areas with low topographical relief and few obvious geographical barriers.Main conclusions Our review confirms long-held views of the ancestral position of the Australian mesic biome but also reveals new insights into the complexity of the processes of contraction, fragmentation, extinction and invasion during the evolution of this biome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.