The Institute of Food Technologists has issued this Scientific Status Summary to update readers on the applications of nanotechnology in the food industry.
: Intelligent packaging is an emerging technology that uses the communication function of the package to facilitate decision making to achieve the benefits of enhanced food quality and safety. In this paper, the term intelligent packaging is defined based on a proposed model of packaging functions, which is consistent with the historical development of food packaging. A conceptual framework is also developed to provide more precise meaning to the definition and to elucidate the anatomy of the intelligent packaging system. The latest advances in smart package devices including barcode labels, radio frequency identification tags, time‐temperature indicators, gas indicators, and biosensors are reviewed. The applications of the conceptual framework to Hazard Analysis Critical Control Points and microwave ovens are illustrated. A research roadmap for intelligent packaging is also suggested.
The motion of a suspension of erythrocytes (red blood cells, RBCs) in response to a high-frequency alternating current (AC) field in a microfluidic device is examined with parallel and orthogonal electrode configurations to delineate the various fundamental driving forces. Cell repulsion from the platinum electrodes due to electrode polarization interacting with cell membrane polarizations is observed to be the strongest force acting on the particles in the first few seconds of field application. We exploit this strong repulsion to concentrate the bioparticles between the microelectrodes to amplify multiparticle aggregation phenomenon and dielectrophoretic (DEP) manipulation in a small and well-characterized region within the microfluidic device. Secondary motions include RBC pearl chain formation along field lines due to particle polarization followed by classical dielectrophoretic motion of the chains across field lines to regions of weaker field. These are driven by far weaker dipole-dipole and field-dipole interactions than the preliminary electrode repulsions. RBC chain length and total aggregated cells are presented for a variety of AC frequencies and are significantly amplified by the electrode repulsion. Motion of particles away from the polarized electrode is found to be species- and age-sensitive and can stand by itself as a promising identification and separation mechanism. In a 0.1 S/m isotonic phosphate buffer saline medium, we observe the largest cell mobilities at an optimal frequency of approximately 1 MHz, corresponding to the inverse diffusion time across the double layer of the cell and across the electrode's polarized layer. This suggests that the dielectric responses of both particles and electrodes in the low MHz frequency range are mostly determined by normal electromigration of ions from the bulk to their interfaces. Sensitivity to RBC age and species suggests that the surface proteins and membrane ion channels can affect the capacitance of the interface to accommodate the ions from the bulk. Such surface ion accumulation and polarization mechanisms are different from the classical dielectric theories. The resonant frequency of electrode polarization at around 1 MHz falls between positive and negative dielectrophoretic resonant frequency peaks - suggesting that the double-layer polarization mechanism is a distinct and potentially important bioparticle manipulation tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.