Supporting high mobility in millimeter wave (mmWave) systems enables a wide range of important applications such as vehicular communications and wireless virtual/augmented reality. Realizing this in practice, though, requires overcoming several challenges. First, the use of narrow beams and the sensitivity of mmWave signals to blockage greatly impact the coverage and reliability of highly-mobile links. Second, highly-mobile users in dense mmWave deployments need to frequently hand-off between base stations (BSs), which is associated with critical control and latency overhead. Further, identifying the optimal beamforming vectors in large antenna array mmWave systems requires considerable training overhead, which significantly affects the efficiency of these mobile systems. In this paper, a novel integrated machine learning and coordinated beamforming solution is developed to overcome these challenges and enable highly-mobile mmWave applications. In the proposed solution, a number of distributed yet coordinating BSs simultaneously serve a mobile user. This user ideally needs to transmit only one uplink training pilot sequence that will be jointly received at the coordinating BSs using omni or quasi-omni beam patterns. These received signals draw a defining signature not only for the user location, but also for its interaction with the surrounding environment. The developed solution then leverages a deep learning model that learns how to use these signatures to predict the beamforming vectors at the BSs. This renders a comprehensive solution that supports highly-mobile mmWave applications with reliable coverage, low latency, and negligible training overhead. Extensive simulation results, based on accurate ray-tracing, show that the proposed deep-learning coordinated beamforming strategy approaches the achievable rate of the genie-aided solution that knows the optimal beamforming vectors with no training overhead, and attains higher rates compared to traditional mmWave beamforming techniques.This work was done while the first author was with Facebook. Ahmed Alkhateeb is currently with Arizona State University
Wireless cellular networks have many parameters that are normally tuned upon deployment and re-tuned as the network changes. Many operational parameters affect reference signal received power (RSRP), reference signal received quality (RSRQ), signal-to-interference-plus-noise-ratio (SINR), and, ultimately, throughput. In this paper, we develop and compare two approaches for maximizing coverage and minimizing interference by jointly optimizing the transmit power and downtilt (elevation tilt) settings across sectors. To evaluate different parameter configurations offline, we construct a realistic simulation model that captures geographic correlations. Using this model, we evaluate two optimization methods: deep deterministic policy gradient (DDPG), a reinforcement learning (RL) algorithm, and multiobjective Bayesian optimization (BO). Our simulations show that both approaches significantly outperform random search and converge to comparable Pareto frontiers, but that BO converges with two orders of magnitude fewer evaluations than DDPG. Our results suggest that data-driven techniques can effectively self-optimize coverage and capacity in cellular networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.