The purpose was to assess the mechanical work and physiological responses to cross country mountain bike racing. Participants (n = 7) cycled on a cross country track at race speed whilst VO2, power, cadence, speed, and geographical position were recorded. Mean power during the designated start section (68.5 ± 5.5 s) was 481 ± 122 W, incurring an O2 deficit of 1.58 ± 0.67 L - min(-1) highlighting a significant initial anaerobic (32.4 ± 10.2%) contribution. Complete lap data produced mean (243 ± 12 W) and normalised (279 ± 15 W) power outputs with 13.3 ± 6.1 and 20.7 ± 8.3% of time spent in high force-high velocity and high force-low velocity, respectively. This equated to, physiological measures for %VO(2max) (77 ± 5%) and % HR(max) (93 ± 2%). Terrain (uphill vs downhill) significantly (P < 0.05) influenced power output (70.9 ± 7.5 vs. 41.0 ± 9.2% W(max)),the distribution of low velocity force production, VO2 (80 ± 1.7 vs. 72 ± 3.7%) and cadence (76 + 2 vs. 55 ± 4 rpm) but not heart rate (93.8 ± 2.3 vs. 91.3 ± 0.6% HR(max)) and led to a significant difference between anaerobic contribution and terrain (uphill, 6.4 ± 3.0 vs. downhill, 3.2 ± 1.8%, respectively) but not aerobic energy contribution. Both power and cadence were highly variable through all sections resulting in one power surge every 32 s and a supra-maximal effort every 106 s. The results show that cross country mountain bike racing consists of predominantly low velocity pedalling with a large high force component and when combined with a high oscillating work rate, necessitates high aerobic energy provision, with intermittent anaerobic contribution. Additional physical stress during downhill sections affords less recovery emphasised by physiological variables remaining high throughout.
The ability to quantify power within the sport of slalom kayaking would provide coaches and athletes objective data to monitor performance. This study determined the validity of a kayak paddle power meter and subsequent relationship between work rate and stroke kinetics. One participant completed multiple trials of a flat-water, straight-line sprint and a sequence of slalom gates at numerous intensities to attain the velocity:power relationship. Laboratory results identified the kayak paddles’ strain gauges were valid and reliable, and field tests presented a cubic relationship for power as a function of velocity in the straight-line sprint (R
2
=0.982) and the slalom-specific test (R
2
=0.993). Further analysis of stroke kinetics identified velocity of hand movement at individual peak force capability to be critical in the highest work rates achieved for both slalom and flat-water sprinting. It was concluded that the kayak paddle power meter tested is a valid means of recording work rate and stroke kinetics during kayaking in the field.
This study compared a training diet recommended for endurance athletes (H-CHO) with an isoenergetic high protein (whey supplemented), moderate carbohydrate (H-Pro) diet on endurance cycling performance. Over two separate 7-d periods subjects (n = 7) ingested either H-CHO (7.9 +/- 1.9 g x kg(-1) x d(-1) carbohydrate; 1.2 +/- 0.3 g x kg(-1) x d(-1) fat; 1.3 +/- 0.4 g x kg(-1) x d(-1) protein) or H-Pro (4.9 +/- 1.8 g x kg(-1) x d(-1); 1.3 +/- 0.3 g x kg(-1) x d(-1); 3.3 +/- 0.4 g x kg(-1) x d(-1)) diet in a randomized, balanced order. On day 8 subjects cycled (self-paced) for a body weight dependent (60 kJ/bm) amount of work. No differences occurred between energy intake (P = 0.422) or fat intake (P = 0.390) during the two dietary conditions. Performance was significantly (P = 0.010) impaired following H-Pro (153 +/- 36) compared with H-CHO (127 +/- 34 min). No differences between treatments were observed for physiological measures taken during the performance trials. These results indicate an ergolytic effect of a 7-d high protein diet on self-paced endurance cycling performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.