Name Search is an important search function in various types of information retrieval systems, such as online library catalogs and electronic yellow pages. It is also difficult due to the high degree of fuzziness required in matching name variants. Previous approaches to name search systems use ad hoc combinations of search heuristics. This paper first discusses two approaches to name modeling-the natural language processing (NLP) and the information retrieval (IR) models-and proposes a hybrid approach. The approach demonstrates a critical combination of complementary NLP and IR features that produces more effective fuzzy name matching. Two principles, position-as-attribute and position-transitionlikelihood, are introduced as the principles for integrating the advantageous aspects of both approaches. They have been implemented in an NLP-and IR-hybrid model system called Friendly Name Search (FNS) for real world applications in multilingual directory searches on the Singapore Yellow pages website.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.