Long range electrical conduction in biomaterials is an increasingly active area of research, which includes systems such as the conductive pili, proteins, biomacromolecules, biocompatible conductive polymers and their derivatives. One...
Antimicrobial resistance is an emerging global health threat necessitating the rapid development of novel antimicrobials. Remarkably, the vast majority of currently available antibiotics are natural products (NPs) isolated from streptomycetes, soil-dwelling bacteria of the genus Streptomyces. However, there is still a huge reservoir of streptomycetes NPs which remains pharmaceutically untapped and a compendium thereof could serve as a source of inspiration for the rational design of novel antibiotics. Initially released in 2012, StreptomeDB (http://www.pharmbioinf.uni-freiburg.de/streptomedb) is the first and only public online database that enables the interactive phylogenetic exploration of streptomycetes and their isolated or mutasynthesized NPs. In this third release, there are substantial improvements over its forerunners, especially in terms of data content. For instance, about 2500 unique NPs were newly annotated through manual curation of about 1300 PubMed-indexed articles, published in the last five years since the second release. To increase interoperability, StreptomeDB entries were hyperlinked to several spectral, (bio)chemical and chemical vendor databases, and also to a genome-based NP prediction server. Moreover, predicted pharmacokinetic and toxicity profiles were added. Lastly, some recent real-world use cases of StreptomeDB are highlighted, to illustrate its applicability in life sciences.
Microorganisms produce secondary metabolites with a remarkable range of bioactive properties. The constantly increasing amount of published genomic data provides the opportunity for efficient identification of biosynthetic gene clusters by genome mining. On the other hand, for many natural products with resolved structures, the encoding biosynthetic gene clusters have not been identified yet. Of those secondary metabolites, the scaffolds of nonribosomal peptides and polyketides (type I modular) can be predicted due to their building block-like assembly. SeMPI v2 provides a comprehensive prediction pipeline, which includes the screening of the scaffold in publicly available natural compound databases. The screening algorithm was designed to detect homologous structures even for partial, incomplete clusters. The pipeline allows linking of gene clusters to known natural products and therefore also provides a metric to estimate the novelty of the cluster if a matching scaffold cannot be found. Whereas currently available tools attempt to provide comprehensive information about a wide range of gene clusters, SeMPI v2 aims to focus on precise predictions. Therefore, the cluster detection algorithm, including building block generation and domain substrate prediction, was thoroughly refined and benchmarked, to provide high-quality scaffold predictions. In a benchmark based on 559 gene clusters, SeMPI v2 achieved comparable or better results than antiSMASH v5. Additionally, the SeMPI v2 web server provides features that can help to further investigate a submitted gene cluster, such as the incorporation of a genome browser, and the possibility to modify a predicted scaffold in a workbench before the database screening.
Matsuoka-type zinc oxide (ZnO) varistor material was synthesized using a conventional solid-state reaction method. X-band electron paramagnetic resonance (EPR) data revealed that Mn ions substitute in the ZnO lattice with a 2+ paramagnetic state. Co ions with either 3+ or 2+ oxidation states are only detectable at cryogenic temperatures. A Cr(3+) EPR signal was strongly suppressed or masked by a Mn(2+) signal. Photoluminescence and electrical results indicated that the varistor sample has fewer intrinsic defects and much higher resistivity as compared to undoped and metal-ion doped ZnO.
The secondary metabolism of bacteria, fungi and plants yields a vast number of bioactive substances. The constantly increasing amount of published genomic data provides the opportunity for an efficient identification of gene clusters by genome mining. Conversely, for many natural products with resolved structures, the encoding gene clusters have not been identified yet. Even though genome mining tools have become significantly more efficient in the identification of biosynthetic gene clusters, structural elucidation of the actual secondary metabolite is still challenging, especially due to as yet unpredictable post-modifications. Here, we introduce SeMPI, a web server providing a prediction and identification pipeline for natural products synthesized by polyketide synthases of type I modular. In order to limit the possible structures of PKS products and to include putative tailoring reactions, a structural comparison with annotated natural products was introduced. Furthermore, a benchmark was designed based on 40 gene clusters with annotated PKS products. The web server of the pipeline (SeMPI) is freely available at: http://www.pharmaceutical-bioinformatics.de/sempi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.