Bacterial surface motility is a complex microbial trait that contributes to host colonization. However, the knowledge about regulatory mechanisms that control surface translocation in rhizobia and their role in the establishment of symbiosis with legumes is still limited. Recently, 2-tridecanone (2-TDC) was identified as an infochemical in bacteria that hampers microbial colonization of plants. In the alfalfa symbiont Sinorhizobium meliloti, 2-TDC promotes a mode of surface motility that is mostly independent of flagella. To understand the mechanism of action of 2-TDC in S. meliloti and unveil genes putatively involved in plant colonization, Tn5 transposants derived from a flagellaless strain that were impaired in 2-TDC-induced surface spreading were isolated and genetically characterized. In one of the mutants, the gene coding for the chaperone DnaJ was inactivated. Characterization of this transposant and newly obtained flagella-minus and flagella-plus dnaJ deletion mutants revealed that DnaJ is essential for surface translocation, while it plays a minor role in swimming motility. DnaJ loss-of-function reduces salt and oxidative stress tolerance in S. meliloti and hinders the establishment of efficient symbiosis by affecting nodule formation efficiency, cellular infection, and nitrogen fixation. Intriguingly, the lack of DnaJ causes more severe defects in a flagellaless background. This work highlights the role of DnaJ in the free-living and symbiotic lifestyles of S. meliloti.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.