The size of eukaryotic genomes can vary by several orders of magnitude, yet genome size does not correlate with the number of genes nor with the size or complexity of the organism. Although ''whole''-genome sequences, such as those now available for 12 Drosophila species, provide information about euchromatic DNA content, they cannot give an accurate estimate of genome sizes that include heterochromatin or repetitive DNA content. Moreover, genome sequences typically represent only one strain or isolate of a single species that does not reflect intraspecies variation. To more accurately estimate whole-genome DNA content and compare these estimates to newly assembled genomes, we used flow cytometry to measure the 2C genome values, relative to Drosophila melanogaster. We estimated genome sizes for the 12 sequenced Drosophila species as well as 91 different strains of 38 species of Drosophilidae. Significant differences in intra-and interspecific 2C genome values exist within the Drosophilidae. Furthermore, by measuring polyploid 16C ovarian follicle cell underreplication we estimated the amount of satellite DNA in each of these species. We found a strong correlation between genome size and amount of satellite underreplication. Addition and loss of heterochromatin satellite repeat elements appear to have made major contributions to the large differences in genome size observed in the Drosophilidae.
The sticky/citron kinase protein is a conserved regulator of cell-cycle progression from invertebrates to humans. While this kinase is essential for completion of cytokinesis, sticky/citron kinase phenotypes disrupting neurogenesis and cell differentiation suggest additional non-cell-cycle functions. However, it is not known whether these phenotypes are an indirect consequence of sticky mutant cell-cycle defects or whether they define a novel function for this kinase. We have isolated a temperature-sensitive allele of the Drosophila sticky gene and we show that sticky/citron kinase is required for histone H3-K9 methylation, HP1 localization, and heterochromatin-mediated gene silencing. sticky genetically interacts with Argonaute 1 and sticky mutants exhibit context-dependent Su(var) and E(var) activity. These observations indicate that sticky/citron kinase functions to regulate both actin-myosin-mediated cytokinesis and epigenetic gene silencing, possibly linking cell-cycle progression to heterochromatin assembly and inheritance of gene expression states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.