Despite microalgae recently receiving enormous attention as a potential source of biodiesel, their use is still not feasible as an alternative to fossil fuels. Recently, interest in microalgae has focused on the production of bioactive compounds such as polyunsaturated fatty acids (PUFA), which provide microalgae a high added value. Several considerations need to be assessed for optimizing PUFA production from microalgae. Firstly, a microalgae species that produces high PUFA concentrations should be selected, such as Nannochloropsis gaditana, Isochrysis galbana, Phaeodactylum tricornutum, and Crypthecodinium cohnii, with marine species gaining more attention than do freshwater species. Closed cultivation processes, e.g., photobioreactors, are the most appropriate since temperature, pH, and nutrients can be controlled. An airlift column with LEDs or optical fibers to distribute photons into the culture media can be used at small scale to produce inoculum, while tubular and flat panels are used at commercial scale. Depending on the microalgae, a temperature range from 15 to 28 °C and a pH from 7 to 8 can be employed. Relevant conditions for PUFA production are medium light irradiances (50-300 μmol photons m(-2) s(-1)), air enriched with (0-1 % (v/v) CO2, as well as nitrogen and phosphorous limitation. For research purposes, the most appropriate medium for PUFA production is Bold's Basal, whereas mixotrophic cultivation using sucrose or glucose as the carbon source has been reported for industrial processes. For cell harvesting, the use of tangential flow membrane filtration or disk stack centrifugation is advisable at commercial scale. Current researches on PUFA extraction have focused on the use of organic solvents assisted with ultrasound or microwaves, supercritical fluids, and electroporation or are enzyme assisted. Commercial-scale extraction involves mainly physical methods such as bead mills and expeller presses. All these factors should be taken into account when choosing a PUFA production system, as discussed in this review.
The food industry is becoming more specialized and processing methods are continuously being developed to meet consumer needs. Consumers demand products that are safe and preferably free of synthetic additives. These additives are associated with health effects, in most cases without reasonable justification. Consequently, consumers are looking for clearly labelled products that guarantee the absence of synthetic additives. This has led to the need to search for natural additives, which the food industry claims arenatural antioxidant preservatives. The sources of natural antioxidants can be extremely varied, because practically all plants contain antioxidants that allow them to protect themselves from solar radiation and pests, as well as to regulate the production of chemical energy. However, the best alternatives for the food industry are fruits and spices, because they are already foods themselves. This article will describe fruits and spices considered as important sources of phenolic antioxidants. The main medicinal properties are related to phenolic compounds and their uses as additives, depending on their chemical structure.
Keywords
Two native Pleurotus spp. strains (white LB-050 and pale pink LB-051) were isolated from rotten tree trunks of cazahuate (Ipomoea murucoides) from the Mexican Mixtec Region. Both strains were chemically dedikaryotized to obtain their symmetrical monokaryotic components (neohaplonts). This was achieved employing homogenization time periods from 60 to 65 s, and 3 day incubation at 28 °C in a peptone-glucose solution (PGS). Pairing of compatible neohaplonts resulted in 56 hybrid strains which were classified into the four following hybrid types: (R1-nxB1-n, R1-nxB2-1, R2-nxB1-n and R2-nxB2-1). The mycelial growth of Pleurotus spp. monokaryotic and dikaryotic strains showed differences in texture (cottony or floccose), growth (scarce, regular or abundant), density (high, regular or low), and pigmentation (off-white, white or pale pink). To determine the rate and the amount of mycelium growth in malt extract agar at 28 °C, the diameter of the colony was measured every 24 h until the Petri dish was completely colonized. A linear model had the best fit to the mycelial growth kinetics. A direct relationship between mycelial morphology and growth rate was observed. Cottony mycelium presented significantly higher growth rates (p < 0.01) in comparison with floccose mycelium. Thus, mycelial morphology can be used as criterion to select which pairs must be used for optimizing compatible-mating studies. Hybrids resulting from cottony neohaplonts maintained the characteristically high growth rates of their parental strains with the hybrid R1-nxB1-n being faster than the latter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.