Here we analyze the role of the angiotensinergic system in the differentiation of dendritic cells (DC). We found that human monocytes produce angiotensin II (AII) and express AT1 and AT2 receptors for AII. DC differentiated from human monocytes in the presence of AT1 receptor antagonists losartan or candesartan show very low levels of CD1a expression and poor endocytic and allostimulatory activities. By contrast, DC differentiation in the presence of either the AT2 receptor antagonist PD 123319 or exogenous AII results in the development of nonadherent cells with CD1a expression and endocytic and allostimulatory activities higher than control DC. Similar contrasting effects were observed in mouse DC obtained from bone marrow cultures supplemented with granulocyte-monocyte colony-stimulating factor. DC differentiated in the presence of the AT1 receptor antagonist losartan express lower levels of CD11c, CD40, and Ia and display a lower ability to endocyte horseradish peroxidase (HRP) and to induce antibody responses in vivo, compared with controls. By contrast, DC differentiation in the presence of either the AT2 receptor antagonist PD 123319 or exogenous AII results in cells with high levels of CD11c, CD40, and Ia, as well as high ability to endocyte HRP and to induce antibody responses in vivo. Our results support the notion that the differentiation of DC is regulated by AII.
It is widely appreciated that inflammatory responses in peripheral tissues are usually associated to the development of acidic microenvironments. Despite this, there are few studies aimed to analyze the effect of extracellular pH on immune cell functions. We analyzed the impact of acidosis on the behavior of dendritic cells (DCs) derived from murine bone marrow. We found that extracellular acidosis (pH 6.5) markedly stimulated the uptake of FITC-OVA, FITC-dextran, and HRP by DCs. In fact, to reach similar levels of endocytosis, DCs cultured at pH 7.3 required concentrations of Ag in the extracellular medium almost 10-fold higher compared with DCs cultured at pH 6.5. Not only the endocytic capacity of DCs was up-regulated by extracellular acidosis, but also the expression of CD11c, MHC class II, CD40, and CD86 as well as the acquisition of extracellular Ags by DCs for MHC class I-restricted presentation. Importantly, DCs pulsed with Ag under acidosis showed an improved efficacy to induce both specific CD8+ CTLs and specific Ab responses in vivo. Our results suggest that extracellular acidosis improves the Ag-presenting capacity of DCs.
Human concentrative nucleoside transporter-3 (hCNT3) is a sodium-coupled nucleoside transporter that exhibits high affinity and broad substrate selectivity, making it the most suitable candidate for mediating the uptake and cytotoxic action of most nucleoside-derived drugs. The drug of this class most commonly used in the treatment of chronic lymphocytic leukemia (CLL) is the pro-apoptotic nucleoside analog fludarabine (Flu), which enters CLL cells primarily through human equilibrative nucleoside transporters (hENTs). Although CLL cells lack hCNT3 activity, they do express this transporter protein, which is located mostly in the cytosol. The aim of our study was to identify agents and mechanisms capable of promoting hCNT3 trafficking to the plasma membrane. Here, we report that all-transretinoic acid (ATRA), currently used in the treatment of acute promyelocytic leukemia (APL), increases hCNT3-related activity through a mechanism that involves trafficking of pre-existing hCNT3 proteins to the plasma membrane. This effect is mediated by the autocrine action of transforming growth factor (TGF)-1, which is transcriptionally activated by ATRA in a p38-dependent manner. TGF-1 acts through activation of ERK1/2 and the small GTPase RhoA to promote plasma membrane trafficking of the hCNT3 protein.
SUMMARYWe have previously reported that human neutrophils pretreated with tumour necrosis factor-a (TNF-a) and then exposed to a variety of agents such as immune complexes, zymosan, phorbol 12-myristate 13-acetate (PMA), C5a, fMLP, or granulocyte-macrophage colony-stimulating factor (GM-CSF), undergo a dramatic stimulation of apoptosis, suggesting that TNF-a is able to prime an apoptotic death programme which can be rapidly triggered by different stimuli. We report here that this response involves the participation of Mac-1 (CD11b/CD18), is dependent on caspases 3, 8 and 9, and is associated with both a loss of mitochondrial transmembrane potential and a down-regulation in expression of the anti-apoptotic protein, Mcl-1. Interestingly, we also found that the anti-apoptotic cytokine interleukin-1 (IL-1) improves the ability of TNF-a to promote apoptosis, supporting the notion than TNF-a, acting together with IL-1, may favour the depletion of neutrophils from the inflammatory areas during the course of acute inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.