We introduce quanTIseq, a method to quantify the fractions of ten immune cell types from bulk RNA-sequencing data. quanTIseq was extensively validated in blood and tumor samples using simulated, flow cytometry, and immunohistochemistry data. quanTIseq analysis of 8000 tumor samples revealed that cytotoxic T cell infiltration is more strongly associated with the activation of the CXCR3/CXCL9 axis than with mutational load and that deconvolution-based cell scores have prognostic value in several solid cancers. Finally, we used quanTIseq to show how kinase inhibitors modulate the immune contexture and to reveal immune-cell types that underlie differential patients’ responses to checkpoint blockers. Availability: quanTIseq is available at http://icbi.at/quantiseq . Electronic supplementary material The online version of this article (10.1186/s13073-019-0638-6) contains supplementary material, which is available to authorized users.
We introduce quanTIseq, a method to quantify the tumor immune contexture, determined by the type and density of tumor-infiltrating immune cells. quanTIseq is based on a novel deconvolution algorithm for RNA sequencing data that was validated with independent data sets. Complementing the deconvolution output with image data from tissue slides enables in silico multiplexed immunodetection and provides an efficient method for the immunophenotyping of a large number of tumor samples.Cancer immunotherapy with antibodies targeting immune checkpoints has shown durable benefit or even curative potential in various cancers 1,2 . As only a fraction of patients are responsive to immune checkpoint blockers, efforts are underway to identify predictive markers as well as mechanistic rationale for combination therapies with synergistic potential. Thus, comprehensive and quantitative immunological characterization of tumors in a large number of clinical samples is of utmost importance, but it is currently hampered by the lack of simple and efficient methods. Therefore, we developed quanTIseq, a computational pipeline for the quantification of the Tumor Immune contexture using RNA-seq data and images of haematoxylin and eosin (H&E)-stained tissue slides (Fig. 1a). As part of quanTIseq, we first developed a deconvolution algorithm based on constrained least squares regression 12 . We then designed a signature matrix from a compendium of 51 RNA-seq data sets (Supplementary (Fig. 1c).To validate quanTIseq we first used both simulated data and published data. We simulated 1,700RNA-seq data sets from human breast tumors by mixing various numbers of reads from tumor and immune-cell RNA-seq data, considering different immune compositions and sequencing depths.quanTIseq obtained a high correlation between the true and the estimated fractions and accurately quantified tumor content (measured by the fraction of "other" cells) (Supplementary Figure 1). We then validated quanTIseq using experimental data from a previous study 13 , in which peripheral blood mononuclear cell (PBMC) mixtures were subjected to both, RNA-seq and flow cytometry. A high accuracy of quanTIseq estimates was also observed with this data set ( Fig. 1d and Supplementary Figure 2). Additionally, we successfully validated quanTIseq using two previous published data sets (Supplementary Figures 3 and 4).As most of the validation data sets available in the literature are based on microarray data or consider a limited number of phenotypes, we generated RNA-seq and flow cytometry data from mixtures of peripheral-blood immune cells collected from nine healthy donors. Flow cytometry was used to quantify all the immune sub-populations considered by quanTIseq signature matrix except macrophages, which are not present in blood. Comparison between quanTIseq cell estimates and flow cytometry fractions showed a high correlation at a single and multiple cell-type level ( Fig. 1e and Supplementary Figure 5).We then validated quanTIseq using two independent data sets. The first data...
Bristol-Myers Squibb, and Genentech. JAS is a compensated member of the advisory boards of Bristol-Myers Squibb, Pfizer, Array, Genentech, Incyte, and Curis and has received research support from Pfizer, Bristol-Myers Squibb, and Curis. PBF receives research funding from Incyte. JMB, MES, MVE, VS, and DBJ are coauthors on a patent pending for use of MHC-II to predict responses from immunotherapy (15/376,276). RSD, DMS, DBJ, and JMB are coauthors on a patent pending for use of FCRL6 antibodies for cancer therapy (62/584,458). JB and JYK are employees of Navigate BioPharma Services and receive compensation as such.
Triple-negative breast cancers (TNBCs) are heterogeneous and aggressive, with high mortality rates. TNBCs frequently respond to chemotherapy, yet many patients develop chemoresistance. The molecular basis and roles for tumor cell–stromal crosstalk in establishing chemoresistance are complex and largely unclear. Here we report molecular studies of paired TNBC patient–derived xenografts (PDXs) established before and after the development of chemoresistance. Interestingly, the chemoresistant model acquired a distinct KRAS Q61R mutation that activates K-Ras. The chemoresistant KRAS -mutant model showed gene expression and proteomic changes indicative of altered tumor cell metabolism. Specifically, KRAS -mutant PDXs exhibited increased redox ratios and decreased activation of AMPK, a protein involved in responding to metabolic homeostasis. Additionally, the chemoresistant model exhibited increased immunosuppression, including expression of CXCL1 and CXCL2, cytokines responsible for recruiting immunosuppressive leukocytes to tumors. Notably, chemoresistant KRAS- mutant tumors harbored increased numbers of granulocytic myeloid-derived suppressor cells (gMDSCs). Interestingly, previously established Ras/MAPK-associated gene expression signatures correlated with myeloid/neutrophil-recruiting CXCL1/2 expression and negatively with T cell–recruiting chemokines (CXCL9/10/11) across patients with TNBC, even in the absence of KRAS mutations. MEK inhibition induced tumor suppression in mice while reversing metabolic and immunosuppressive phenotypes, including chemokine production and gMDSC tumor recruitment in the chemoresistant KRAS-mutant tumors. These results suggest that Ras/MAPK pathway inhibitors may be effective in some breast cancer patients to reverse Ras/MAPK-driven tumor metabolism and immunosuppression, particularly in the setting of chemoresistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.